前言
思路
我们贪心的考虑最优解 , 考虑第 i i i层
我们一定是将具有深度越大的节点 放到 深度小的节点处
例如样例, 考虑将 2 2 2放到 3 , 4 3,4 3,4后面
因此我们考虑 动态规划
状态表示 :
f
[
u
]
f[u]
f[u] 以当前
u
u
u为根节点所能构造出的最大深度
状态计算 :
f
[
u
]
=
m
a
x
(
f
[
u
]
,
f
[
v
]
+
n
u
m
[
u
]
)
f[u] = max(f[u],f[v]+num[u])
f[u]=max(f[u],f[v]+num[u]) 即考虑将最大的子树放到其他节点的后面
因为根节点的计算 需要使用到 子节点
所以我们考虑 从下到上的 d p dp dp
Mycode
const int N = 1e5+10;
vector<int> g[N];
int num[N];
int f[N];
void dfs(int u,int fa){
for(auto j : g[u]){
if(j!=fa){
dfs(j,u);
f[u] = max(f[u],f[j]+num[u]);
}
}
}
void solve()
{
int n;cin>>n;
for(int i=2;i<=n;i++){
int x;cin>>x;
g[x].pb(i);
num[x]++;
}
dfs(1,0);
cout<<f[1]<<endl;
}