☆HDU 1024 Max Sum Plus Plus 绝对能看懂得题解(难题,多个子段和的和最大)

42 篇文章 1 订阅

Max Sum Plus Plus

Time Limit:1000MS    Memory Limit:32768KB    64bit IO Format:%I64d & %I64u

Description

Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^

Input

Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.

Output

Output the maximal summation described above in one line.

Sample Input

1 3 1 2 3
2 6 -1 4 -2 3 -2 3

Sample Output

6
8
本题的大致意思为给定一个数组,求其分成m个不相交子段和最大值的问题。

这题真的是不会做,看题解也看了好久,看网上题解,感觉他们解释的一点也不清楚,好像只是照着kuangbin的代码瞎讲讲,有些细节跟技巧都没说,我自己感觉不知道那些自己写代码肯定写不出来

先贴一下kuangbin对这题的解释:

状态dp[i][j]有前j个数,组成i组的和的最大值。决策:
第j个数,是在第包含在第i组里面,还是自己独立成组。
方程 dp[i][j]=Max(dp[i][j-1]+a[j] , max( dp[i-1][k] ) + a[j] ) 0<k<j
空间复杂度,m未知,n<=1000000,  继续滚动数组。
时间复杂度 n^3. n<=1000000.  显然会超时,继续优化。
max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。
我们可以在每次计算dp[i][j]的时候记录下前j个的最大值
用数组保存下来  下次计算的时候可以用,这样时间复杂度为 n^2.

m为给定数组,n为数组中的元素总数,Status[i][j]表示前i个数在选取第i个数的前提下分成j段的最大值,其中1<=j<=i<=n && j<=m,
状态转移方程为:

Status[i][j]=Max(Status[i-1][j]+Num[i],Max(Status[0][j-1]~Status[i-1][j-1])+Num[i])

乍看一下这个方程挺吓人的,因为题中n的限定范围为1~1,000,000而m得限定范围没有给出,m只要稍微大一点就会爆内存。但仔细分析后
就会发现Status[i][j]的求解只和Status[*][j]与Status[*][j-1]有关所以本题只需要两个一维数组即可搞定状态转移。

在进行更进一步的分析还会发现其实Max(Status[0][j-1]~Status[i-1][j-1])根本不需要单独求取。在求取now_Status(保存本次状态的数组)
的过程中即可对pre_Status(保存前一次状态的数组)进行同步更新

我的理解:

首先先说最原始的状态转移方程,dp[i][j]=Max(dp[i][j-1]+a[j] , max( dp[i-1][k] ) + a[j] ) 0<k<j,这里的dp【i】【j】代表的是前i个数分成 j 段所代表的j段子段和的总和最大的那个值,注意一定是以a[i]结尾,当我们拿到一个数时候,要往前放,只有,注意是只有两种方法,1是自己作为一段(那前面就只能有j-1段了),2是跟前面那个数组成第j段;第一种dp[i][j-1] + a[i]好说,

第二种自己单独一段也许比较难懂,自己单独一段了,要想使前i个最大,肯定自己要加上前面以某个数结尾的j-1段最大的一段,及dp[k][j-1],k不同,说明这i-1段以不同的值结尾,那dp的值也不同,我们要保证前i个最大,肯定是选以某个k结尾使dp最大的那个值了

然后说状态用滚动数组优化二维数组,用一个mmax[j-1]代表前j-1个数里某段和最大的值,这里kuangbin说的很清楚了,但是,但是,一会看程序的时候,仔细的同学会发现,

mmax[j-1]代表的是前j-1个不包括j-1这个数的最大和,这里解释一下

1,dp[j]=max(dp[j-1]+a[j],mmax[j-1]+a[j]);
2,mmax[j-1]=mmmax;

 3,mmmax=max(mmmax,dp[j]);

这是kuangbin三个dp转移方程式(1维表示),你们会发现第一步dp[j]=max(dp[j-1]+a[j],mmax[j-1]+a[j]);用完mmax[j-1]之后,第二部才给mmax[j-1]赋值,这其实也就是我之前说的,这是前j-2个数的最大和的值,网上几乎所有题解都说这一步是前j-1个数里最大的和,解释的好像很对,(我当时也看懂了,但是自己写程序的时候连样例都过不了,因为前j-1个数字嘛,肯定先更新完了,才能用吧。)其实这里是没有什么问题的,mmax代表前j-2个数和最大的,而dp[j-1]代表的是前j-2个数+上a[j];这样所有情况都包含了。

下一个细节是:

for(i=1;i<=m;i++)
        {
                mmmax=-INF;
                for(j=i;j<=n;j++)
                {
                    dp[j]=max(dp[j-1]+a[j],mmax[j-1]+a[j]);
                    mmax[j-1]=mmmax;
                    mmmax=max(mmmax,dp[j]);
                }
        }

kuangbin在j的for循环前面让mmmax = 负无穷,这我一开始理解不了,在手动模拟之后,终于知道这个细节多么强了,上图:



你会发现,那里赋值最大值是为了确保至少有i个数字可以分成i段,所以循环的时候,他会让mmax[i-1]等于负无穷,那样肯定只能跟前面一个数组成第i段,然后再不断记录mmax的值,这里让前面等于负无穷的意义是:分为i段时,以前i个数里的某个数做为分成i-1段结尾的子段不可能存在。然后更新后面dp【j】,这里的dp【j】就可以用于更新mmax了,因为那些数可以作为结尾分成i-1段

说了这么多,应该细节算法都明白了。。。

<span style="color:#000000;">#include<stdio.h>
#include<algorithm>
#include<iostream>
using namespace std;
#define MAXN 1000000
#define INF 0x7fffffff
int dp[MAXN+10];
int mmax[MAXN+10];
int a[MAXN+10];
int main()
{
    int n,m;
    int i,j,mmmax;
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        for(i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            mmax[i]=0;
            dp[i]=0;
        }
        dp[0]=0;
        mmax[0]=0;
        for(i=1;i<=m;i++)
        {
                mmmax=-INF;
                for(j=i;j<=n;j++)
                {
                    dp[j]=max(dp[j-1]+a[j],mmax[j-1]+a[j]);
                    mmax[j-1]=mmmax;
                    mmmax=max(mmmax,dp[j]);
                  // printf("j = %d, a[%d] = %d, dp[%d] = %d, mmax[%d] = %d, mmax[%d] = %d\n",j,j,a[j],j,dp[j],j,mmax[j],j-1,mmax[j-1]);
                }
        }
        printf("%d\n",mmmax);

    }
    return 0;
}</span>





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值