Codeforces 713C C. Sonya and Problem Wihtout a Legend (经典DP)

探讨将严格递增数列问题转化为非严格递增的动态规划解决方法,通过调整数列元素值来减少复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


C. Sonya and Problem Wihtout a Legend
time limit per test
5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Sonya was unable to think of a story for this problem, so here comes the formal description.

You are given the array containing n positive integers. At one turn you can pick any element and increase or decrease it by 1. The goal is the make the array strictly increasing by making the minimum possible number of operations. You are allowed to change elements in any way, they can become negative or equal to 0.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 3000) — the length of the array.

Next line contains n integer ai (1 ≤ ai ≤ 109).

Output

Print the minimum number of operation required to make the array strictly increasing.

Examples
input
7
2 1 5 11 5 9 11
output
9
input
5
5 4 3 2 1
output
12
Note

In the first sample, the array is going to look as follows:

2 3 5 6 7 9 11

|2 - 2| + |1 - 3| + |5 - 5| + |11 - 6| + |5 - 7| + |9 - 9| + |11 - 11| = 9

And for the second sample:

1 2 3 4 5

|5 - 1| + |4 - 2| + |3 - 3| + |2 - 4| + |1 - 5| = 12

这个题跟poj3666是同一个类型只是这个是严格的,那个不必严格的





++
 
 
 
n  
 
x  
 
dp[i][j]=abs(b[i]a[j])+min(dp[i1][k]),kj  
iji1kj  
O(n2)O(1)  
aiajij,ij  
aiiajj  
ai=aii


直接考虑结果的整个数列   必然存在那么几个数  他是从始至终 都没有变过  那么假设有一些数会受到这个数影响 比如一个数ai不变 如果aj 是受ai影响 那么就会消耗  

先考虑这样一个问题,如果是非严格单调递增该如何做,我们会发现每次调整,都是调整某个数字为原先数列中存在的数字,最后才是最优的,所以,我们设DP[i][j]表示前i个数字,最后一个数为原先数列排序后第j大的数字的最小代价,那么做一遍n2的DP就能够获得答案,现在题目中要求的是严格单调递增,那么就用到一种经典的处理方法,a[i]=a[i]-i,这样子就转化为非严格单调的问题了。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 3e3 + 5;
const ll INF = 0x7fffffffffffffff; //这里不是const int 是 const ll
ll a[maxn], b[maxn], dp[maxn][maxn]; //因为每个数都在1e9范围内,所以要用ll
int main()
{
    int n;
    cin >> n;
    for(int i = 1; i <= n; i++)
    {
        cin >> a[i];
        a[i] -= i;   //这里就是把严格递增转换成非严格递增
        b[i] = a[i];
    }
    sort(b+1, b+n+1);
    for(int i = 1; i <= n; i++)
    {
        ll min1 = INF;   
        for(int j = 1; j <= n; j++)
        {
            min1 = min(min1, dp[i-1][j]);  //这个min1表示的就是i-1个数并且最后一个数小于等于b[j]的最小值,这种记录方式很好
            dp[i][j] = min1 + abs(a[i]-b[j]);
        }
    }
    ll ans = INF;
    for(int j = 1; j <= n; j++)
    {
        ans = min(dp[n][j], ans);  //看哪个结尾最小
    }
    cout << ans << endl;
    return 0;
}


好的,让我为您解析Codeforces 1005C "Boredom" 这道题目,并提供一个简洁的 C++ 解法。 题目大意: 给定一个长度为 n 的整数序列 a 和两个正整数 d、m。你需要将这个序列分成若干段,每一段都满足以下条件之一: 1. 段内所有元素之和小于等于 m 2. 或者相邻两元素之间的差值绝对值大于等于 d 目标是计算可以得到的最大分段数目。 核心思路: 这是一个典型的贪心算法问题。我们可以在遍历数组的过程中逐步确定每个区间的端点位置。当遇到不符合条件的情况时就创建新的区间。 解决方案分析: 1. 首先读取输入数据并初始化变量 2. 使用双重循环检查当前元素是否能满足条件(2) 3. 如果无法继续扩展,则尝试按条件(1)结束该段落 4. 记录最大分割次数结果 下面是一个简单的C++实现: ```cpp #include <bits/stdc++..h> using namespace std; int main(){ int t; cin >> t; while(t--){ long long n,d,m; cin >> n >> d >> m; vector<long long> arr(n); for(auto& x : arr){ cin >> x; } // Sort in descending order to maximize usage of condition (a[i] - a[i+1]) >= d first sort(arr.begin(),arr.end(),greater<int>()); long long sum = accumulate(begin(arr),end(arr),0LL); int cnt = 0; if(sum <= m){ // Special case where entire array can be one segment with total <= M cout << 1 << '\n'; continue; } for(int i=0;i<n-1;++i){ sum -= arr[i]; // Check two conditions separately and update count accordingly bool cond_1_ok = false; bool cond_2_ok = abs(arr[i]-arr[i+1])>=d; if(!cond_2_ok && sum<=m){ cond_1_ok = true; } if(cond_2_ok || cond_1_ok){ ++cnt; if(cond_1_ok || sum==0){ break; } } } // Add last piece (+1) since loop always ends before processing final element cout << max(cnt + 1,1) << "\n"; } } ``` 注意这里使用了 `#include <bits/stdc++.h>`作为万能头文件包含了所有标准库功能。实际编码建议还是应该只包含所需的特定头文件以提高程序性能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值