D. Taxes
题目链接
http://codeforces.com/contest/735/problem/D
题面
Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to n (n ≥ 2) burles and the amount of tax he has to pay is calculated as the maximum divisor of n (not equal to n, of course). For example, if n = 6 then Funt has to pay 3 burles, while for n = 25 he needs to pay 5 and if n = 2 he pays only 1 burle.
As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial n in several parts n1 + n2 + ... + nk = n (here k is arbitrary, even k = 1 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1 because it will reveal him. So, the condition ni ≥ 2 should hold for all i from 1 to k.
Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split n in parts.
输入
The first line of the input contains a single integer n (2 ≤ n ≤ 2·109) — the total year income of mr. Funt.
输出
Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax.
样例输入
4
样例输出
2
【题意】:某个人有n元的工资,但是他要交税,交税的数目就是n的最大因子。比如说6,他的因子有1,2,3;最大的是3,所以要交3元的税,但是这个人想偷税漏税(作为共产主义接班人的我们不能向他学习)。偷税漏税的方法就是他把这n元分成几部分,比如把6分成 3 和 3,那么他就只交2元税就可以了。但是不能这几部分都不能为1, 否则会被发现的。思想:尽量都拆成素数,这样每部分只要交1,但是炒成的素数还尽量少。这就是哥德巴赫猜想
如果一个数是偶数(2除外)那么他能分解为两个质数的和;
如果一个数是奇数那么它有三种情况:
(1)本身是质数
(2)这个数减二是质数,那么他就能分解为两个质数(很显然就是n-2 和 2)
(3)可以分解为一个质数和一个偶数,就是三个质数
#include<iostream>
using namespace std;
int main(){
int n;
while(cin >> n){
int f = 0, ff = 0;
for(int i = 2; i * i <= n; i++){
if(n % i == 0) f = 1;
if((n - 2) % i == 0) ff = 1;
}
if(f == 1 && n % 2 == 0) {
cout << 2 << endl;
continue;
}
if(f == 0) cout << 1 << endl;
else if(ff == 0) cout << 2 << endl;
else cout << 3 << endl;
}
return 0;
}