标题:风险度量
X星系的的防卫体系包含 n 个空间站。这 n 个空间站间有 m 条通信链路,构成通信网。
两个空间站间可能直接通信,也可能通过其它空间站中转。
对于两个站点x和y (x != y), 如果能找到一个站点z,使得:
当z被破坏后,x和y无法通信,则称z为关于x,y的关键站点。
显然,对于给定的两个站点,关于它们的关键点的个数越多,通信风险越大。
你的任务是:已知网络结构,求两站点之间的通信风险度,即:它们之间的关键点的个数。
输入数据第一行包含2个整数n(2 <= n <= 1000), m(0 <= m <= 2000),分别代表站点数,链路数。
空间站的编号从1到n。通信链路用其两端的站点编号表示。
接下来m行,每行两个整数 u,v (1 <= u, v <= n; u != v)代表一条链路。
最后1行,两个数u,v,代表被询问通信风险度的两个站点。
输出:一个整数,如果询问的两点不连通则输出-1.
例如:
用户输入:
7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6
则程序应该输出:
2
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
java选手注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
java选手注意:主类的名字必须是:Main,否则按无效代码处理。
c/c++选手注意: main函数需要返回0
c/c++选手注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
c/c++选手注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
思路:输入的时候做并查集,判断最后是否连通,不连通输出-1,然后暴力每个点,看他是不是关键点,具体就是把pre数组重置,所有与这个点有关的边都不连,最后a,b是否连通了,不连通就ans++;注意枚举的点不要是a,b两个点。。。
一开始数组开小了。。蓝桥杯这玩意一定小心写,很可能过了样例,有些东西不注意就没分了。。比如数组大小,复杂度,某些特殊点,long long等,多想想把,反正4个小时那么长。。多注意下,而且可以检查
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 2e3 + 5;
int u[maxn], v[maxn], pre[maxn];
int Find(int x)
{
return pre[x] == x ? x : pre[x] = Find(pre[x]);
}
void join(int x, int y)
{
pre[Find(x)] = Find(y);
}
int main()
{
int n, m;
scanf("%d%d", &n, &m);
int a, b;
for(int i = 1; i <= n; i++) pre[i] = i;
for(int i = 1; i <= m; i++)
{
scanf("%d%d", &u[i], &v[i]);
join(u[i],v[i]);
}
scanf("%d%d", &a, &b);
if(Find(a) != Find(b))
{
printf("-1\n");
return 0;
}
int ans = 0;
for(int i = 1; i <= n; i++)
{
if(i == a || i == b) continue;
for(int k = 1; k <= n; k++) pre[k] = k;
for(int j = 1; j <= m; j++)
{
if(i == u[j] || i == v[j]) continue;
join(v[j], u[j]);
}
if(Find(a) != Find(b))
{
ans++;
}
}
printf("%d\n", ans);
return 0;
}
或者dfs,bfs,既然他们能连通,那就能从一个点到另一个点。。枚举每个点,遇到枚举的点 直接continue就好了。。看能不能到达y就好了。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int maxn = 1e4+5;
vector<int> g[maxn];
int n, m, x, y;
bool book[maxn];
bool bfs(int bad)
{
memset(book, 0, sizeof(book));
book[bad] = 1;
queue<int> q;
q.push(x);
book[x] = 1;
while(!q.empty())
{
int u = q.front(); q.pop();
if(u == y) return 0;
for(int i = 0; i < g[u].size(); i++)
{
int v = g[u][i];
if(!book[v])
{
book[v] = 1;
q.push(v);
}
}
}
return 1;
}
int main(void)
{
while(cin >> n >> m)
{
for(int i = 0; i < maxn; i++)
g[i].clear();
while(m--)
{
int u, v;
scanf("%d%d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
}
scanf("%d%d", &x, &y);
int tmp = bfs(0);
if(tmp) { puts("-1"); continue; }
int ans = 0;
for(int i = 1; i <= n; i++)
if(i != x && i != y)
ans += bfs(i);
printf("%d\n", ans);
}
return 0;
}