Codeforeces 984 C. Finite or not? (数论)

版权声明:希望我的博客可以为别人带去知识与便利,让那些像我曾经一样迷茫的小伙伴不再迷茫~ https://blog.csdn.net/qq_34374664/article/details/80939031

C. Finite or not?
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given several queries. Each query consists of three integers ppqq and bb. You need to answer whether the result of p/qp/q in notation with base bb is a finite fraction.

A fraction in notation with base bb is finite if it contains finite number of numerals after the decimal point. It is also possible that a fraction has zero numerals after the decimal point.

Input

The first line contains a single integer nn (1n1051≤n≤105) — the number of queries.

Next nn lines contain queries, one per line. Each line contains three integers ppqq, and bb (0p10180≤p≤10181q10181≤q≤10182b10182≤b≤1018). All numbers are given in notation with base 1010.

Output

For each question, in a separate line, print Finite if the fraction is finite and Infinite otherwise.

Examples
input
Copy
2
6 12 10
4 3 10
output
Copy
Finite
Infinite
input
Copy
4
1 1 2
9 36 2
4 12 3
3 5 4
output
Copy
Finite
Finite
Finite
Infinite
Note

612=12=0,510612=12=0,510

43=1,(3)1043=1,(3)10

936=14=0,012936=14=0,012

412=13=0,13412=13=0,13



题意:

给定p,q,b,问p/q能否表示成b进制下的有限小数形式(p,q,b <= 1e18)
思路:
对于约分后的p/q,只需关心1/q是否能在b进制下有限表现即可。
把1/q换成小数形式,例如1/8 = 0.125,像整数转换进制一样,小数转换进制也是不断地除以进制的基,而小数的基是b^-1。则0.125转换为二进制过程如下,0.125(除2^-1)-->余0商0.25(除2^-1)-->余0商0.5(除2^-1)-->余1商0-->停止。所以0.125的二进制形式就是0.001。所以1/q能否能在b进制下有限表现即 是否存在x使 1/q * b^x == 整数(没有小数位)即 是否存在x使q能被b^x整除。

其实最终能转化成 q中的所有质因子是否都是b中的质因子。


在十进制下一个分数是有限小数的结论是:分母的因子只有2和5
2和5正好是10的两个因子(除了1和它本身)

于是大胆猜了一发结论XD
先将p/q约分为最简形式

  1. 如果此时gcd(q, b) == 1,即q,b互质,则一定为无限小数
  2. 否则,若gcd(q, b) != 1,就让q一直除gcd(q, b),直到gcd(q, b) == 1
    如果此时q==1,说明q只含有b的因子,可以转化为有限小数,反之不行。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <map>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 5;
ll p, q, b;
int main()
{
    int t;
    while(~scanf("%d", &t))
    {
        while(t--)
        {
            scanf("%lld%lld%lld", &p, &q, &b);
            ll gcd = __gcd(p, q);
            q /= gcd;
            while(q != 1)
            {
                gcd = __gcd(q, b);
                if(gcd == 1) break;
                while(q%gcd == 0) q /= gcd;
            }
            if(q == 1) printf("Finite\n");
            else puts("Infinite");
        }
    }
    return 0;
}


阅读更多

没有更多推荐了,返回首页