第七章 贝叶斯分类器(待补)

在这里插入图片描述

7.1

西瓜数据集3.0(P84)

编号,色泽,根蒂,敲声,纹理,脐部,触感,密度,含糖率,好瓜
1,青绿,蜷缩,浊响,清晰,凹陷,硬滑,0.697,0.46,2,乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,0.774,0.376,3,乌黑,蜷缩,浊响,清晰,凹陷,硬滑,0.634,0.264,4,青绿,蜷缩,沉闷,清晰,凹陷,硬滑,0.608,0.318,5,浅白,蜷缩,浊响,清晰,凹陷,硬滑,0.556,0.215,6,青绿,稍蜷,浊响,清晰,稍凹,软粘,0.403,0.237,7,乌黑,稍蜷,浊响,稍糊,稍凹,软粘,0.481,0.149,8,乌黑,稍蜷,浊响,清晰,稍凹,硬滑,0.437,0.211,9,乌黑,稍蜷,沉闷,稍糊,稍凹,硬滑,0.666,0.091,10,青绿,硬挺,清脆,清晰,平坦,软粘,0.243,0.267,11,浅白,硬挺,清脆,模糊,平坦,硬滑,0.245,0.057,12,浅白,蜷缩,浊响,模糊,平坦,软粘,0.343,0.099,13,青绿,稍蜷,浊响,稍糊,凹陷,硬滑,0.639,0.161,14,浅白,稍蜷,沉闷,稍糊,凹陷,硬滑,0.657,0.198,15,乌黑,稍蜷,浊响,清晰,稍凹,软粘,0.36,0.37,16,浅白,蜷缩,浊响,模糊,平坦,硬滑,0.593,0.042,17,青绿,蜷缩,沉闷,稍糊,稍凹,硬滑,0.719,0.103,

在这里插入图片描述

7.2

朴素贝叶斯分类器是建立在属性条件独立性假设上的。当属性不独立时,且所有样本不独立的属性取值相同、分类也相同,那么此时朴素贝叶斯分类器也将产生最优分类器。

7.3(待补)

7.4

采用P149的办法,将式子对数化,即将连乘化为连加。因此式子(7.15)变为:

h n b ( x ) = arg ⁡ max ⁡ θ log ⁡ ( P ( c ) ) ∑ i = 1 d log ⁡ ( P ( x i ∣ c ) ) h_{n b}(x)=\underset{\theta}{\arg \max } \log (P(c))\sum_{i=1}^{d} \log \left(P\left(x_{i} | c\right)\right) hnb(x)=θargmaxlog(P(c))i=1dlog(P(xic))

7.5

解释一:原文链接:https://blog.csdn.net/icefire_tyh/article/details/52167273

假设1类样本均值为 u 1 u_1 u1,2类样本均值为 u 2 u_2 u2
由于数据满足同方差的高斯分布,当样本足够大时,可以认为
线性判别分析公式 J = ∣ w T ( u 1 − u 2 ) ∣ 2 w T ( Σ 1 + Σ 2 ) w J=\frac{|w^T(u_1-u_2)|^2}{w^T(Σ_1+Σ_2)w} J=wT(Σ1+Σ2)wwT(u1u2)2求最大值
1 J = w T ( Σ 1 + Σ 2 ) w ∣ w T ( u 1 − u 2 ) ∣ 2 = ∑ i ( 1 − y i ) ∣ w T ( x i − u 1 ) ∣ 2 + y i ∣ w T ( x i − u 2 ) ∣ 2 ∣ w T ( u 1 − u 2 ) ∣ 2 \frac{1}{J}=\frac{w^T(Σ_1+Σ_2)w}{|w^T(u_1-u_2)|^2}=\sum_i\frac{(1-y_i)|w^T(x_i-u_1)|^2+y_i|w^T(x_i-u_2)|^2}{|w^T(u_1-u_2)|^2} J1=wT(u1u2)2wT(Σ1+Σ2)w=iwT(u1u2)2(1yi)wT(xiu1)2+yiwT(xiu2)2求最小值
最优贝叶斯分类器使每个训练样本的后验概率P(c|x)P(c|x)最大,对应线性判别分析中,即离对应分类的中心距离(平方)除以两个分类中心的距离(平方)越小。
即求 ∑ i ( 1 − y i ) ∣ w T ( x i − u 1 ) ∣ 2 + y i ∣ w T ( x i − u 2 ) ∣ 2 ∣ w T ( u 1 − u 2 ) ∣ 2 \sum_i\frac{(1-y_i)|w^T(x_i-u_1)|^2+y_i|w^T(x_i-u_2)|^2}{|w^T(u_1-u_2)|^2} iwT(u1u2)2(1yi)wT(xiu1)2+yiwT(xiu2)2的最小值
两个式子相同,所以线性判别分析产生最优贝叶斯分类器。

解释二:https://zhuanlan.zhihu.com/p/51768750
在这里插入图片描述

7.6(待补)

AODE:P155

7.7

(7.15):先验概率项是 P ( c ) = ∣ D c ∣ D P(c)=\frac{|D_c|}{D} P(c)=DDc,题中说明一共有两个类c,一个类需要至少30个样例,即 P ( C 1 ) P(C_1) P(C1)的估算就需要30个,即 ∣ D c 1 ∣ |D_{c1}| Dc1需要30个,因此共需要60个.

(7.23):先验概率项是 P ( c , x i ) = ∣ D c , x i ∣ + 1 ∣ D ∣ + N + N i P(c,x_i)=\frac{|D_{c,x_i}|+1}{|D|+N+N_i} P(c,xi)=D+N+NiDc,xi+1,其中 ∣ D c , x i ∣ |D_{c,x_i}| Dc,xi是类别为c且在第i个属性上取值为 x i x_i xi的集合。因此意味着 任意 c , x i c,x_i c,xi的组合至少出现30次。

  • 属性二值(+1,-1)、类二类(0,1):

    • 最好情况:
      当d=1时,0和-1的组合30个,0和+1的组合30个,1和-1的组合30个,1和+1的组合30个,一共120个。
      当d=2时,假设属性1取+1时,属性2正好也取+1;属性1取-1时,属性2也去-1,因此即 (0 +1 +1) 30个,(0 -1 -1)30个,(1 +1 +1)30个,(1 -1 -1)30个,此时刚好满足任意 c , x i c,x_i c,xi的组合至少出现30次,且一共120个
      因此,最好情况不管d取何值,共要120个
  • 最坏情况

    • 120个样子中,第二个属性d2都取相同的值 +1 ,那么为了估算 P ( c , x 2 = − 1 ) P(c,x_2=-1) P(cx2=1) 需要额外60个样本,总计180个样本,同理计算出d=2,3,4… 时的样本数,即每多一个特征,最坏情况需要多加额外60个样本, d=n时,需要 60(n+1)个样本。

即最好120,最坏 60(n+1)

7.8

根据P157的公式(7.26)可知:
在这里插入图片描述

7.9(待补)

7.10(待补)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
朴素贝叶斯分类的训练模型包括以下步骤: 1. 收集训练数据:从现实场景中收集相关数据,如电子邮件分类、文本分类等。 2. 数据预处理:对数据进行清洗、去重、分词等处理,将原始数据转化为可用于训练的数据集。 3. 特征提取:根据实际场景选取相关特征,将数据集中的每个实例表示为一个向量,例如将文本数据表示为词袋模型。 4. 计算先验概率:计算每个类别出现的概率。 5. 计算条件概率:根据训练数据计算每个特征在每个类别下出现的概率。 6. 计算后验概率:根据贝叶斯公式计算每个实例属于每个类别的概率。 7. 选择类别:根据后验概率选择概率最大的类别作为实例的分类结果。 在Python中,可以使用第三方库scikit-learn实现朴素贝叶斯分类的训练模型。具体步骤如下: 1.导入需要的库: ```python from sklearn.naive_bayes import MultinomialNB from sklearn.feature_extraction.text import CountVectorizer ``` 2.准备数据并进行特征提取: ```python # 训练数据 train_data = ["I love python programming", "Python is the best programming language", "R is good for statistics"] # 训练数据的标签 train_labels = ["Python", "Python", "R"] # 特征提取 vectorizer = CountVectorizer() # 将文本转换为向量 train_vectors = vectorizer.fit_transform(train_data) ``` 3.训练模型并预测: ```python # 创建朴素贝叶斯分类 clf = MultinomialNB() # 训练模型 clf.fit(train_vectors, train_labels) # 预测新数据 test_data = ["I prefer R for data analysis"] test_vectors = vectorizer.transform(test_data) predicted = clf.predict(test_vectors) ``` 4.输出预测结果: ```python print(predicted) # 输出:['R'] ``` 以上就是使用Python实现朴素贝叶斯分类训练模型的具体步骤。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值