split的中文是什么?

这里 'split' 的中文意思是"数据分割"或"数据划分"。

在机器学习和深度学习中,数据集通常会被划分成训练集、验证集和测试集,这就是所谓的数据分割或数据划分。

在这个例子中:

  • 'xsub_train' 表示交叉主体(cross-subject)训练集,包含了属于这个 split 的样本 ID。
  • 'xsub_val' 表示交叉主体验证集,包含了属于这个 split 的样本 ID。

通过对数据进行这种分割,可以在训练模型时使用训练集进行参数优化,使用验证集进行超参数调优和模型选择,最后在测试集上评估模型的泛化性能。

所以这里的 'split' 字段就是用来记录这种数据划分信息的,方便后续的数据处理和模型训练。

 

data= {
'split': {
'xsub_train': ['S001C001P004R002A026', 'S001C002P004R001A016', 'S001C001P008R001A051', 'S001C001P001R001A001',..., 'S002C003P008R002A001'],
'xsub_val': ['S002C001P007R002A056', ..., 'S001C002P007R002A041']
},
'annotations': [
{
'frame_dir': 'S001C001P004R002A026',
'label': 26,
'img_shape': (540, 960),
'original_shape': (540, 960),
'total_frames': 90,
'num_person_raw': 1,
'keypoint': numpy.array([[[[501.2, 145.1],
[502.3, 146.7],
# ... additional keypoint coordinates
]]])
},
# ... additional annotation dictionaries
]
}

这个数据结构包含两个主要部分:

  1. 'split'

    • 这部分包含了数据集的不同 split 信息,如 'xsub_train' 和 'xsub_val'
    • 每个 split 对应一个列表,列表中包含了属于该 split 的样本 ID。
  2. 'annotations'

    • 这部分包含了实际的注释数据。
    • 每个注释数据都是一个字典,其中包含了与该样本相关的各种信息,如 'frame_dir''label''img_shape''original_shape''total_frames''num_person_raw' 和 'keypoint'
    • 'keypoint' 字段是一个 numpy 数组,表示该样本的关键点坐标。

总的来说,这种数据结构可以很好地表示一个带有 split 信息的注释数据集。'split' 部分用于存储不同 split 的样本 ID,而 'annotations' 部分则存储了每个样本的详细注释信息。这种结构可以方便地用于数据处理和模型训练等场景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值