demo/hrnet_w32_coco_256x192.py

### 使用HRNet模型进行人体姿态估计测试 #### 准备环境 为了能够顺利运行HRNet模型进行人体姿态估计,需先准备合适的开发环境。这通常涉及安装Python及其依赖库,以及下载预训练好的HRNet模型权重文件。 对于基于PyTorch框架下的实现,可以通过pip命令快速搭建所需的软件包环境: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu pip install cython matplotlib scipy opencv-python h5py yacs Pillow imageio termcolor tabulate tqdm requests filelock ninja ``` 接着克隆官方GitHub仓库并编译必要的组件: ```bash git clone https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation.git cd HigherHRNet-Human-Pose-Estimation/ make ``` #### 下载预训练模型 访问项目页面获取最新的预训练模型链接,并将其放置于指定目录下以便后续加载使用[^4]。 #### 测试图片输入 准备好待测图像后,可通过如下脚本调用`demo/demo_pose.py`来进行简单的姿态预测展示: ```python import cv2 from demo.demo_pose import parse_args, main if __name__ == '__main__': args = parse_args() # 设置路径参数 args.cfg = 'experiments/coco/higher_hrnet/w32_384x288_adam_lr1e-3.yaml' args.opts = ['TEST.MODEL_FILE', './models/pytorch/pose_coco/pose_higher_hrnet_w32_384x288.pth'] img_path = "path_to_your_image.jpg" img = cv2.imread(img_path) result = main(args, img) ``` 上述代码片段展示了如何配置基本选项并通过给定的图像执行一次推理操作。注意替换其中的`img_path`变量值为你自己的测试样本位置。 #### 结果可视化 完成推断过程之后,程序会返回包含有关键点坐标的列表形式的结果对象。这些坐标可以直接用于绘制骨架连接线或标记关节位置,从而直观呈现人物的姿态信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值