这可以确保每次运行实验时,得到的结果是可重复的意思是第一次运行准确率是90%,当忘了保存,需要进行运行第二次能不能得到90%这个准确率?
是的,这就是设置随机种子的目的。当你设置了随机种子后,每次运行实验都会得到相同的结果。
具体来说:
- 第一次运行实验得到 90% 的准确率。
- 如果你忘记保存模型,需要再次运行实验。
- 由于设置了相同的随机种子,第二次运行实验也会得到 90% 的准确率。
这是因为:
- 设置随机种子可以确保每次实验中的随机初始化、数据采样等步骤都是相同的。
- 这样,在其他条件不变的情况下,模型的训练和评估结果也会是一致的。
如果没有设置随机种子,那么每次运行实验时,这些随机过程可能会产生不同的结果,导致最终的准确率也会有所差异。
因此,设置随机种子是确保实验结果可重复的关键措施。只要你在第二次运行时使用了相同的随机种子,就能够再次得到 90% 的准确率。这有助于问题排查和结果分析。
只要你在第二次运行时使用了相同的随机种子的意思是seed = init_random_seed(args.seed)这里的等号左边还是等号右边?
这里的等号右边 init_random_seed(args.seed)
是初始化随机种子的函数调用,它会返回一个随机种子值。
这个返回的随机种子值会被赋值给等号左边的 seed
变量。
也就是说,在第二次运行实验时,你需要保证使用了相同的 args.seed
值作为输入,这样通过 init_random_seed(args.seed)
函数调用返回的 seed
值就会是相同的。
换句话说,你需要确保在第二次运行时使用了和第一次运行时完全相同的 args.seed
值。这样,通过 seed = init_random_seed(args.seed)
这一行代码,你就能得到和第一次运行时完全相同的随机种子 seed
值。
只有这样,后续通过 set_random_seed(seed, deterministic=args.deterministic)
设置各种随机数生成器的种子,你才能确保整个实验流程的确定性和可重复性。
总之,关键是要确保第二次运行时使用了和第一次完全相同的 args.seed
值作为输入。这样通过 seed = init_random_seed(args.seed)
就能得到相同的随机种子值。
parser.add_argument('--seed', type=int, default=None, help='random seed')发现默认是None
如果在命令行参数中设置的 --seed
参数默认值为 None
,那么在代码中使用这个默认值会有一些问题。
让我们来分析一下这种情况下的流程:
这显然不利于实验的可重复性。
为了确保实验的可重复性,最好的做法是:
这样做可以确保即使没有在命令行指定 --seed
参数,程序也会使用一个固定的种子值,从而确保实验结果的可重复性。
总之,默认值为 None
可能会带来一些问题,最好设置一个固定的默认种子值,并在代码中对 args.seed
值进行判断和处理,以确保实验的可重复性。
- 在命令行启动程序时,如果没有指定
--seed
参数,那么args.seed
就会被设置为None
。 - 在代码中,你可能会有类似这样的初始化随机种子的代码:
seed = init_random_seed(args.seed)
- 如果
args.seed
是None
,那么init_random_seed(args.seed)
就会返回一个随机生成的种子值。 - 这意味着,如果你没有在命令行指定
--seed
参数,那么每次运行程序时都会得到不同的随机种子。 - 在命令行参数中设置
--seed
参数的默认值为一个固定的整数,例如0
。 - 在代码中使用
args.seed
时,先判断其是否为None
。如果是None
,则手动设置一个固定的种子值,例如0
。