文章目录
1. 什么是markdown
Markdown是一种酷炫到爆的文本标记语言!它的历史可追溯到2004年,由约翰·格鲁伯(John Gruber)和亚伦·斯沃茨(Aaron Swartz)共同创造。这两位天才让人们不再为繁琐的HTML标签而烦恼,而是可以通过一种更简单、更直观的方式来编写格式化的文本。
Markdown的作用简直无敌!它可以帮助你快速创建漂亮的文档、博客、论文等等。你只需使用简单的符号和结构,就能添加标题、段落、列表、链接、图片、程序、数学公式等元素,而无需纠结于繁琐的HTML代码,同时也可以内嵌入html代码。
同时,Markdown也是一种跨平台的语言。无论你是使用Windows、Mac还是Linux,无论你在使用Typora、VS Code、neovim、vim或其他编辑器,Markdown都能无缝契合,带给你愉快的写作体验。
总结起来,Markdown就像是一场文本革命,让写作变得简单、有趣、且充满幽默感。让我们一起享受Markdown的魔力吧!Markdown如同超级英雄,能在不经意间将平凡的文本转变为美丽的艺术品。但要记住,用Markdown写作可能会让你欲罢不能,因为它真的泰裤辣!
2. 什么是typora
软件安装,请移步:轻松写作利器—Typora!内含保姆级教程建议收藏!
下面我再补充一点:
- 简洁易用:Typora就像你衣橱里的一件百搭T恤,简单明了又好看。它没有复杂的菜单和工具栏,让你摆脱了格式设置的困扰,轻松享受写作的乐趣。
- 实时预览:Typora就像你的私人时尚顾问,给你实时反馈,让你一边写作一边欣赏文档的渲染效果。它就像是你在试衣间里看到的完美造型,让你对自己的文档赞不绝口。
- 纯粹的写作体验:Typora就像一片清凉的沙滩,没有烦人的海藻和杂草,让你尽情畅游文字的海洋。它把Markdown标记符号藏了起来,让你专注于创作,而不会被标记符号纠缠不休。
- 快捷操作:Typora就像一位随叫随到的侍者,为你提供各种方便快捷的操作。无论是插入标题、列表还是表格,只需轻轻一点,它就会像魔术一样帮你完成。
- 多平台支持:Typora就像一个全球旅行的背包客,不管你在哪个操作系统上,它都能陪伴你。Windows、macOS、Linux,随你挑选,无缝切换写作体验。
- 自定义主题和样式:Typora就像一位时尚达人,让你在编辑器的舞台上成为时尚焦点。你可以选择各种字体、颜色主题和代码块样式,打造属于自己的时尚写作风格。
总而言之,Typora就像一位迷人的写作伴侣,它的简洁、实用和专注于写作的特点深受喜爱。它为你提供了一个愉快、高效的写作环境,让你尽情释放创造力,而不被繁琐的操作打扰。写作就像在时尚舞台上展示自己一样,让Typora成为你的写作时尚搭档吧!
3. 基础语法
我在这里都是按typora的用法来的,支持快捷键。
3.0 基础语法概要
- 标题
- 目录
- 文本样式
- 引用文本
- 引用代码
- 链接
- 图片
- 列表
- 任务列表
- 使用表情符号
- 脚注
- 表格
- 折叠
后面会有新的内容和将会慢慢加上的。
3.1 标题
3.1.1 语法
标题的级数与#的个数有关:
-
一级
#
-
二级
##
-
三级
###
-
四级
####
-
··· (以此类推)
# 一级标题 ## 二级标题 ### 三级标题 #### 四级标题
展示:
❗ 注:有人喜欢在一篇文章中最上面为文章标题,想居中,同时,又不想在目录toc中显示。可以这样如下图:
下面的原码:
[toc]
<h1 style='text-align:center'>标题</h1>
# 1.标题一
## 2. 标题二
### 3. 标题三
#### 4. 标题四
3.1.2 typora快捷键‘
标题(级数) | 快捷键 |
---|---|
标题一 | ctrl+1 |
标题二 | ctrl+2 |
标题三 | ctrl+3 |
3.2 目录
3.2.1 语法
语法:
@[toc]
效果:
3.2.2 typora的大纲设置
栏选项: 视图 -> 大纲
3.3 文本样式
粗体、斜体、删除线、下标或上标文本表示。其实,粗体和加粗、强调都差不多。
Style | 语法 | 键盘快捷键 | 示例 | 输出 |
---|---|---|---|---|
加粗 | ** ** 或 __ __ | Command+B (Mac) 或 Ctrl+B (Windows/Linux) | **This is bold text** | 粗体字体 |
斜体 | * * 或 _ _ | Command+I (Mac) 或 Ctrl+I (Windows/Linux) | *倾斜字体* 或_倾斜字体_ | 倾斜字体 |
删除线 | ~~ ~~ | 无 | ~~删除线~~ | |
粗体和嵌入的斜体 | ** ** 和 _ _ | 无 | **This text is _extremely_ important** | 此文本*非常*重要 |
全部粗体和斜体 | *** *** | 无 | ***加粗和斜体*** | 加粗和斜体 |
下标 | <sub> </sub> | 无 | 这是<sub>下标</sub> | 这是下标 |
上标 | <sup> </sup> | 无 | 这是<sup>上标</sup> | 这是上标 |
提示:查看对话时,可以通过突出显示文本然后键入 R 来自动引用评论中的文本。你可以通过单击 然后单击“引用回复”来引用整条评论。 有关键盘快捷方式的详细信息,请参阅“键盘快捷方式”。
3.4 引用文本
> 第一个
>> 第二个
>>> 第三个
展示:
第一个
第二个
第三个
3.5 引用代码
引用代码有两种,一种是行内代码引用,一种是块代码引用
3.5.1 行内代码引用
`` 行内代码引用 ``或
` 行内代码引用 `
展示
这个 行内代码引用
或 行内代码引用
如:docker run ubuntu
3.5.2 块代码引用
```java(语言)
代码块
```
Markdown的代码引用支持多种编程语言,常见的语言包括但不限于:
- JavaScript
- Python
- Java
- C++
- HTML/CSS
- Ruby
- Go
- PHP
- Swift
- Rust
这只是一些常见的编程语言示例,Markdown通常支持许多其他编程语言。你可以在代码块前使用语言标识符,如javascript
、python
、java
等,以告诉Markdown要使用哪种语言的语法高亮显示代码。这样做可以使代码更易读,并且在渲染时正确地显示语法高亮效果。
无论你使用哪种编程语言,Markdown都提供了简单且易于使用的代码引用功能,让你可以在文档中展示和分享代码片段。
3.5.3 typora可以打开代码块中的显示行号的功能
同时可以勾上代码块自动换行和设置代码缩进
3.5.4 快捷键
ctrl+shift+k :代码快速引用快捷键
3.6 链接
- 语法:
[链接描述](url)
其中url可以为
1. 本地的文件路径(相对或绝对的都可以)
2. url(如:https://www.baidu.com)
- 示例:
我当前文件目录下有一个文件,文件名:使用.md
绝对路径: E:\学习文件\personal-notes\note\markdown\markdown学习笔记与手册\使用.md
[使用.md文件的相对路径](./使用.md)
[使用.md文件的相对路径](使用.md)
[使用.md文件的绝对路径](E:\学习文件\personal-notes\note\markdown\markdown学习笔记与手册\使用.md)
- 展示:
由上面的gif可知,相对和绝对都可以跳转至引用的图像。
- 注:跳转至文件是ctrl+单击右键
3.7 图片

typora的这个功能真的是出彩:
-
可以展示网络图片,typora会自己下载到本地
如一个csnd图床的图片:
https://img-blog.csdnimg.cn/d8b5b81c446641edbe9b6a12e6fc650a.png
将图片链接直接贴到typora中,typora会自动将图片下载到本地保存:
-
可以用相对路径
-
可以直接配合snipaste使用: F1截屏-》
- 可以使用gif动图
3.8 列表
3.8.1 创建有序列表。
要创建有序列表,请添加带有数字和句点的行项目。
语法:
1. 第一项
2. 第二项
3. 第三项
4. 第四项
- 第一项
- 第二项
- 第三项
- 第四项
数字不必按数字顺序排列,但列表应从数字 1 开始。
语法:
1. 第一项
8. 第二项
3. 第三项
9. 第四项
展示:
- 第一项
- 第二项
- 第三项
- 第四项
**注:**CommonMark 和其他一些轻量级标记语言允许您使用括号 (
)
) 作为分隔符(例如1) 第一项
),但并非所有 Markdown 应用程序都支持这一点,因此从兼容性角度来看,这不是一个很好的选择。为了兼容性,仅使用句点。
3.8.2 无序列表
要创建无序列表,请在行项目前面添加破折号 ( -
)、星号 ( *
) 或加号 ( )。+
缩进一项或多项以创建嵌套列表。
- 语法:
<-- 添加破折号 ( `-`) -->
- 第一项
- 第二项
- 第三项
- 第四项
<-- 添加破折号 ( `*`) -->
* 第一项
* 第二项
* 第三项
* 第四项
<-- 添加破折号 ( `+`) -->
+ 第一项
+ 第二项
+ 第三项
+ 第四项
<-- `+`缩进一项或多项以创建嵌套列表。 -->
- 第一项
- 第二项
- 第三项
- 嵌套列表项
- 嵌套列表项
- 第四项
- 展示:
<-- 添加破折号 ( -
) -->
- 第一项
- 第二项
- 第三项
- 第四项
<-- 添加破折号 ( *
) -->
- 第一项
- 第二项
- 第三项
- 第四项
<-- 添加破折号 ( +
) -->
- 第一项
- 第二项
- 第三项
- 第四项
<-- +
缩进一项或多项以创建嵌套列表。 -->
- 第一项
- 第二项
- 第三项
- 嵌套列表项
- 嵌套列表项
- 第四项
3.9 任务列表
- 语法
- [x] 任务列表已勾选
- [ ] 任务列表未勾选
- 展示:
- 任务列表
- 任务列表未勾选
3.10 使用表情符号
这个没有太多讲的,在https://emojipedia.org/emoji-1.0/ 这个网址中选择自己想要的copy自己想要的。
3.11 脚注
-
语法:
这是个脚注[^1]. 这是个脚注2[^2]. [^1]: 脚注1 [^2]: 要在脚注中添加换行符,请在新行前面加上 2 个空格。
-
展示:
这是个脚注1.
这是个脚注22.
❗ 注:ctrl+右键,可以直接跳转到对就的脚注上,点后面的回车,回到开始的位置
3.12 表格
|
您可以使用竖线和连字符创建表-
。连字符用于创建每列的标题,而管道则分隔每列。您必须在表格前添加一个空行才能正确呈现。
| 一 | 二 |
| ------------- | ------------- |
| 第1,1 | 第1,2 |
| 第2,1 | 第1,2 |
展示:
一 | 二 |
---|---|
第1,1 | 第1,2 |
第2,1 | 第1,2 |
- 以在表格中使用链接、内联代码块和文本样式等格式。
| 一 | 二 |
| ------- | --------- |
| `第1,1` | *第1,2* |
| 第2,1 | **第1,2** |
一 | 二 |
---|---|
第1,1 | 第1,2 |
第2,1 | 第1,2 |
:
您可以通过在标题行中连字符的左侧、右侧或两侧添加冒号,将文本与列的左侧、右侧或中心对齐。
| 左侧对齐 | 右侧对齐 | 中心对齐 |
| :--- | ---: | :---: |
| 左侧对齐 | 右侧对齐 | 中心对齐 |
| 左侧对齐 | 右侧对齐 | 中心对齐 |
左侧对齐 | 右侧对齐 | 中心对齐 |
---|---|---|
左侧对齐 | 右侧对齐 | 中心对齐 |
左侧对齐 | 右侧对齐 | 中心对齐 |
- 要将管道
|
作为内容包含在单元格中,请\
在管道之前使用
<details> 块内的任何 Markdown 都将被折叠,直到读者单击以展开详细信息。 </details><summary>折叠标题读者知道里面有什么</summary>
块内的任何 Markdown 都将被折叠,直到读者单击以展开详细信息。 折叠标题读者知道里面有什么
4. 公式
在这里我将会把我自己学习数学时,用到的一些数学公式、符号,统一在这里描述。
首先,markdown自身是并不支持公式的,所以需要在typora中打开相关的设置。
在Markdown中编写数学公式,您可以使用LaTeX语法。LaTeX是一种广泛使用的排版系统,用于编写科学和数学文档。Markdown通过支持LaTeX语法来扩展其功能,使得在文档中插入数学公式变得非常方便。
整个latex的语法比较多,在这里我尽量多一些把程序员能用到的给列举出来。 后面我还会将一些大学高数、线性代数、概率常见的数学公式。
4.0 参考文档
https://www.mathjax.org/
https://blog.csdn.net/guikunchen/article/details/88652407
Markdown教程:高级语法——公式_哔哩哔哩_bilibili
https://www.latex4technics.com/
https://www.overleaf.com/articles/the-comprehensive-latex-symbol-list/czzxggzcyyqj.pdf
4.1 Markdown数学公式基础
4.1.1 数学编辑器打开
4.1.1.1 块数学编辑器
"$$"然后回车就行,如下图 然后就可以添加数学公式:
$$
数据公式
$$
KaTeX parse error: Undefined control sequence: \label at position 6: 数据公式\̲l̲a̲b̲e̲l̲{某某}
4.1.1.2 行内数据编辑器
这个是个$ x+1 $,$f(x)=g(x)$
- 展示:
这个是个$ x+1 , , ,f(x)=g(x)$
4.1.2 加减乘除
- 加:
+
+
+:
$+$
- 减:-:
$-$
- 加:
a
×
b
a \times b
a×b:
$a \times b$
- 加:
+
+
+:
$+$
4.1.3 上下标
x^{1}_{2+x}
x 2 + x 1 x^{1}_{2+x} x2+x1
4.1.3 分式
\frac{1}{2}
1 2 \frac{1}{2} 21
4.1.4 开根号
1. 平方根
\sqrt{2}
2 \sqrt{2} 2
2. 立方根
\sqrt[3]{8}
KaTeX parse error: Undefined control sequence: \label at position 13: \sqrt[3]{8}\̲l̲a̲b̲e̲l̲{e1}
以此类推
8
4
\sqrt[4]{8}
48:\sqrt[4]{8}
.
.
.
...
...
8
x
\sqrt[x]{8}
x8 : \sqrt[x]{8}
4.1.5 向量
a
⃗
⋅
b
⃗
\vec {a} \cdot \vec {b}
a⋅b \vec {a} \cdot \vec {b}
4.1.6 微积分
\sum {a+b}
:
∑
a
+
b
\sum {a+b}
∑a+b
4.1.7 极限
\lim
后面加一个\limits_
可以把后面的{}
中的内容放在
lim
\lim
lim 的下面。如
lim
x
→
0
x
2
\lim \limits_{x \to 0} x^2
x→0limx2
下面写一个比较复杂的公式:
\lim \limits_{x \to \infty} \frac {In \cos (x-1)}{1-\sin \frac {\pi}{2}x}
:
lim
x
→
1
I
n
cos
(
x
−
1
)
1
−
sin
π
2
x
\lim \limits_{x \to 1} \frac {In \cos (x-1)}{1-\sin \frac {\pi}{2}x}
x→1lim1−sin2πxIncos(x−1)
4.1.8 累乘
\prod \frac {1}{2}
:
∏
1
2
\prod \frac {1}{2}
∏21
4.1.9 累加
y = ∑ i = 1 n x i y = \sum_{i=1}^{n}{x_i} y=i=1∑nxi
4.1.10 无穷大
\infty
:
∞
\infty
∞
4.1.11 引用公式后和手动编号
1.引用公式后
可以通过\label{某某}
和\ref{某某}
两个来定位公式(在typora中功能是可以使用的),其中“某某”可以为任何内容。“ctrl+右键” 点击\ref{某某}
就可以跳到对应的公式上去。
2. 手动编号
typora会自动给公式编号,你如果想自己编号,可以使用\tag{数字}
如:
$$
f(x)=b \tag{我的公式}
$$
f ( x ) = b (我的公式) f(x)=b \tag{我的公式} f(x)=b(我的公式)
4.4 特殊字符练习
后面是一些特殊字符,
a. 数学模式重音符
\hat{a}
: a ^ \hat{a} a^ 加个wide么,大小变宽widehat{a}
: a ^ \widehat{a} a
\check{a}
: a ˇ \check{a} aˇ声调的表示(暂时没有想到其它的应用场景了): a ˉ \bar{a} aˉ:
\bar{a}
、 a ˊ \acute{a} aˊ:\acute{a}
、 a ˇ \check{a} aˇ:\check{a}
、 a ˋ \grave{a} aˋ:\grave{a}
这个第四声有点太大了,有些格格不入。a ~ \tilde{a} a~:
\tilde{a}
、 a ˙ \dot{a} a˙:\dot{a}
a ¨ \ddot{a} a¨:\ddot{a}
a ˘ \breve{a} a˘:\breve{a}
b. 小写的希腊字母
源码 | 展示 |
---|---|
\theta | θ \theta θ |
o | o o o |
\upsilon | υ \upsilon υ |
\beta | β \beta β |
\vartheta | ϑ \vartheta ϑ |
\pi | π \pi π |
\phi | ϕ \phi ϕ |
\gamma | γ \gamma γ |
\iota | ι \iota ι |
\varpi | ϖ \varpi ϖ |
\varphi | φ \varphi φ |
\delta | δ \delta δ |
\kappa | κ \kappa κ |
\rho | ρ \rho ρ |
\chi | χ \chi χ |
\epsilon | ϵ \epsilon ϵ |
\lambda | λ \lambda λ |
\varrho | ϱ \varrho ϱ |
\psi | ψ \psi ψ |
\varepsilon | ε \varepsilon ε |
\mu | μ \mu μ |
\sigma | σ \sigma σ |
\omega | ω \omega ω |
\zeta | ζ \zeta ζ |
\nu | ν \nu ν |
\varsigma | ς \varsigma ς |
\eta | η \eta η |
\xi | ξ \xi ξ |
`\tau | τ \tau τ |
c. 大写希腊字母
源码 | 展示 |
---|---|
\Gamma | Γ \Gamma Γ |
\Lambda | Λ \Lambda Λ |
\Sigma | Σ \Sigma Σ |
\Psi | Ψ \Psi Ψ |
\Delta | Δ \Delta Δ |
\Xi | Ξ \Xi Ξ |
\Upsilon | Υ \Upsilon Υ |
\Omega | Ω \Omega Ω |
\Theta | Θ \Theta Θ |
\pi | π \pi π |
\phi | ϕ \phi ϕ |
d. 二元逻辑关系符
源码 | 展示 |
---|---|
< | < < < |
> | > > > |
= | = = = |
\leq或\le | ≤ \leq ≤或 ≤ \le ≤ |
\geq or \ge | ≥ \geq ≥ or ≥ \ge ≥ |
\equiv | ≡ \equiv ≡ |
\ll | ≪ \ll ≪ |
\gg | ≫ \gg ≫ |
\doteq | ≐ \doteq ≐ |
\prec | ≺ \prec ≺ |
\succ | ≻ \succ ≻ |
\sim | ∼ \sim ∼ |
\preceq | ⪯ \preceq ⪯ |
\succeq | ⪰ \succeq ⪰ |
\simeq | ≃ \simeq ≃ |
\subset | ⊂ \subset ⊂ |
\approx | ≈ \approx ≈ |
\cong | ≅ \cong ≅ |
\cdots | ⋯ \cdots ⋯ |
e. 二元关系符
源码 | 展示 |
---|---|
\pm | ± \pm ± |
\cdot | ⋅ \cdot ⋅ |
\times | × \times × |
\cup | ∪ \cup ∪ |
\sqcup | ⊔ \sqcup ⊔ |
\vee | ∨ \vee ∨ |
\lor | ∨ \lor ∨ |
\oplus | ⊕ \oplus ⊕ |
\odot | ⊙ \odot ⊙ |
\otimes | ⊗ \otimes ⊗ |
\bigtriangleup | △ \bigtriangleup △ |
\lhd | ⊲ \lhd ⊲ |
\unlhd | ⊴ \unlhd ⊴ |
\mp | ∓ \mp ∓ |
\div | ÷ \div ÷ |
\setminus | ∖ \setminus ∖ |
\cap | ∩ \cap ∩ |
\sqcap | ⊓ \sqcap ⊓ |
\land | ∧ \land ∧ |
\wedge | ∧ \wedge ∧ |
\ominus | ⊖ \ominus ⊖ |
\oslash | ⊘ \oslash ⊘ |
\bigcirc | ◯ \bigcirc ◯ |
\bigtriangledown | ▽ \bigtriangledown ▽ |
\rhd | ⊳ \rhd ⊳ |
\unrhd | ⊵ \unrhd ⊵ |
\triangleleft | ◃ \triangleleft ◃ |
\triangleright | ▹ \triangleright ▹ |
\star | ⋆ \star ⋆ |
\ast | ∗ \ast ∗ |
\circ | ∘ \circ ∘ |
\bullet | ∙ \bullet ∙ |
\diamond | ⋄ \diamond ⋄ |
\uplus | ⊎ \uplus ⊎ |
\amalg | ⨿ \amalg ⨿ |
\dagger | † \dagger † |
\ddagger | ‡ \ddagger ‡ |
\int | ∫ \int ∫ |
f. 大尺寸运算符
源码 | 展示 |
---|---|
\sum | ∑ \sum ∑ |
\bigcup | ⋃ \bigcup ⋃ |
\cup | ∪ \cup ∪ |
\bigvee | ⋁ \bigvee ⋁ |
\vee | ∨ \vee ∨ |
\bigoplus | ⨁ \bigoplus ⨁ |
\oplus | ⊕ \oplus ⊕ |
\prod | ∏ \prod ∏ |
\bigcap | ⋂ \bigcap ⋂ |
\cap | ∩ \cap ∩ |
\bigwedge | ⋀ \bigwedge ⋀ |
\wedge | ∧ \wedge ∧ |
\bigotimes | ⨂ \bigotimes ⨂ |
\times | × \times × |
\bigodot | ⨀ \bigodot ⨀ |
\bigsqcup | ⨆ \bigsqcup ⨆ |
\coprod | ∐ \coprod ∐ |
\int | ∫ \int ∫ |
\oint | ∮ \oint ∮ |
g. 箭头
源码 | 展示 |
---|---|
\leftarrow | ← \leftarrow ← |
\gets | ← \gets ← |
\rightarrow | → \rightarrow → |
\to | → \to → |
\leftrightarrow | ↔ \leftrightarrow ↔ |
\Leftarrow | ⇐ \Leftarrow ⇐ |
\Rightarrow | ⇒ \Rightarrow ⇒ |
\Leftrightarrow | ⇔ \Leftrightarrow ⇔ |
\mapsto | ↦ \mapsto ↦ |
\hookleftarrow | ↩ \hookleftarrow ↩ |
\leftharpoonup | ↼ \leftharpoonup ↼ |
\leftharpoondown | ↽ \leftharpoondown ↽ |
\rightleftharpoons | ⇌ \rightleftharpoons ⇌ |
\longleftarrow | ⟵ \longleftarrow ⟵ |
\longrightarrow | ⟶ \longrightarrow ⟶ |
\longleftrightarrow | ⟷ \longleftrightarrow ⟷ |
\Longleftarrow | ⟸ \Longleftarrow ⟸ |
\Longrightarrow | ⟹ \Longrightarrow ⟹ |
\Longleftrightarrow | ⟺ \Longleftrightarrow ⟺ |
\longmapsto | ⟼ \longmapsto ⟼ |
\hookrightarrow | ↪ \hookrightarrow ↪ |
\rightharpoonup | ⇀ \rightharpoonup ⇀ |
\rightharpoondown | ⇁ \rightharpoondown ⇁ |
\iff | ⟺ \iff ⟺ |
\uparrow | ↑ \uparrow ↑ |
\downarrow | ↓ \downarrow ↓ |
\updownarrow | ↕ \updownarrow ↕ |
\Uparrow | ⇑ \Uparrow ⇑ |
\Downarrow | ⇓ \Downarrow ⇓ |
\Updownarrow | ⇕ \Updownarrow ⇕ |
\nearrow | ↗ \nearrow ↗ |
\searrow | ↘ \searrow ↘ |
\swarrow | ↙ \swarrow ↙ |
\nwarrow | ↖ \nwarrow ↖ |
\leadsto | ⇝ \leadsto ⇝ |
h. 定界符
源码 | 展示 |
---|---|
\( | ( ( ( |
\) | ) ) ) |
\[ or \lbrack | [ [ [ or [ \lbrack [ |
\] or \rbrack | ] o r ] ] or \rbrack ]or] |
\{ or \lbrace | { \{ { or { \lbrace { |
\} or \rbrace | } \} } or } \rbrace } |
\rangle | ⟩ \rangle{} ⟩ |
\langle | ⟨ \langle{} ⟨ |
\rfloor | ⌋ \rfloor ⌋ |
\lfloor | ⌊ \lfloor ⌊ |
/ | / / / |
\backslash | \ \backslash \ |
\uparrow | ↑ \uparrow ↑ |
\downarrow | ↓ \downarrow ↓ |
\updownarrow | ↕ \updownarrow ↕ |
| or \vert | ∣ | ∣ or ∣ \vert ∣ |
\lceil | ⌈ \lceil ⌈ |
\rceil | ⌉ \rceil ⌉ |
\Uparrow | ⇑ \Uparrow ⇑ |
\Downarrow | ⇓ \Downarrow ⇓ |
\Updownarrow | ⇕ \Updownarrow ⇕ |
| or \Vert | ∣ | ∣ or ∥ \Vert ∥ |
i. 大尺寸定界符
展示 | 源码 |
---|---|
⟮ \lgroup ⟮ | \lgroup |
⟯ \rgroup ⟯ | \rgroup |
⎰ \lmoustache ⎰ | \lmoustache |
⎱ \rmoustache ⎱ | \rmoustache |
j. 其它符号
展示 | 源码 |
---|---|
… \dots … | \dots |
ℏ \hbar ℏ | \hbar |
ℜ \Re ℜ | \Re |
∀ \forall ∀ | \forall |
′ ' ′ | ' |
∇ \nabla ∇ | \nabla |
⊥ \bot ⊥ | \bot |
♢ \diamondsuit ♢ | \diamondsuit |
¬ o r ¬ \neg or \lnot ¬or¬ | \neg or \lnot |
⋯ \cdots ⋯ | \cdots |
ı \imath | \imath |
ℑ \Im ℑ | \Im |
∃ \exists ∃ | \exists |
′ \prime ′ | \prime |
△ \triangle △ | \triangle |
⊤ \top ⊤ | \top |
♡ \heartsuit ♡ | \heartsuit |
♭ \flat ♭ | \flat |
⋮ \vdots ⋮ | \vdots |
ȷ \jmath | \jmath |
ℵ \aleph ℵ | \aleph |
℧ \mho ℧ | \mho |
∅ \emptyset ∅ | \emptyset |
□ \Box □ | \Box |
∠ \angle ∠ | \angle |
♣ \clubsuit ♣ | \clubsuit |
♮ \natural ♮ | \natural |
⋱ \ddots ⋱ | \ddots |
ℓ \ell ℓ | \ell |
℘ \wp ℘ | \wp |
∂ \partial ∂ | \partial |
∞ \infty ∞ | \infty |
◊ \Diamond ◊ | \Diamond |
√ \surd √ | \surd |
♠ \spadesuit ♠ | \spadesuit |
♯ \sharp ♯ | \sharp |
k. 非数学符号
展示 | 源码 |
---|---|
† \dag † | \dag |
‡ \ddag ‡ | \ddag |
§ \S § | \S |
¶ \P ¶ | \P |
© \copyright c◯ | \copyright |
£ \pounds £ | \pounds |
m. ams定界符
展示 | 源码 |
---|---|
⌜ \ulcorner ┌ | \ulcorner |
⌝ \urcorner ┐ | \urcorner |
∣ \lvert ∣ | \lvert |
∥ \lVert ∥ | \lVert |
∥ \rVert ∥ | \rVert |
⌞ \llcorner └ | \llcorner |
⌟ \lrcorner ┘ | \lrcorner |
n. ams希腊和希伯来字母
展示 | 源码 |
---|---|
ϝ \digamma ϝ | \digamma |
ϰ \varkappa ϰ | \varkappa |
ℶ \beth ℶ | \beth |
ℸ \daleth ℸ | \daleth |
ℷ \gimel ℷ | \gimel |
o. ams二元关系符
展示 | 源码 |
---|---|
⋖ \lessdot ⋖ | \lessdot |
⩽ \leqslant ⩽ | \leqslant |
⪕ \eqslantless ⪕ | \eqslantless |
≤ 9 \leq9 ≤9 | \leq9 |
⋘ o r ⋘ \lll or \llless ⋘or⋘ | \lll or \llless |
≲ \lesssim ≲ | \lesssim |
⪅ \lessapprox ⪅ | \lessapprox |
≶ \lessgtr ≶ | \lessgtr |
⋚ \lesseqgtr ⋚ | \lesseqgtr |
⪋ \lesseqqgtr ⪋ | \lesseqqgtr |
≼ \preccurlyeq ≼ | \preccurlyeq |
⋞ \curlyeqprec ⋞ | \curlyeqprec |
≾ \precsim ≾ | \precsim |
⪷ \precapprox ⪷ | \precapprox |
⫅ \subseteqq ⫅ | \subseteqq |
⋐ \Subset ⋐ | \Subset |
⊏ \sqsubset ⊏ | \sqsubset |
∴ \therefore ∴ | \therefore |
∣ \shortmid ∣ | \shortmid |
⌣ \smallsmile ⌣ | \smallsmile |
⊲ \vartriangleleft ⊲ | \vartriangleleft |
⊴ \trianglelefteq ⊴ | \trianglelefteq |
⋗ \gtrdot ⋗ | \gtrdot |
KaTeX parse error: Undefined control sequence: \gegslant at position 1: \̲g̲e̲g̲s̲l̲a̲n̲t̲ | \gegslant |
⪖ \eqslantgtr ⪖ | \eqslantgtr |
≧ \geqq ≧ | \geqq |
⋙ o r ⋙ \ggg or \gggtr ⋙or⋙ | \ggg or \gggtr |
≳ \gtrsim ≳ | \gtrsim |
⪆ \gtrapprox ⪆ | \gtrapprox |
≷ \gtrless ≷ | \gtrless |
KaTeX parse error: Undefined control sequence: \gtregless at position 1: \̲g̲t̲r̲e̲g̲l̲e̲s̲s̲ | \gtregless |
⪌ \gtreqqless ⪌ | \gtreqqless |
≽ \succcurlyeq ≽ | \succcurlyeq |
⋟ \curlyeqsucc ⋟ | \curlyeqsucc |
≿ \succsim ≿ | \succsim |
⪸ \succapprox ⪸ | \succapprox |
⫆ \supseteqq ⫆ | \supseteqq |
⋑ \Supset ⋑ | \Supset |
⊐ \sqsupset ⊐ | \sqsupset |
∵ \because ∵ | \because |
∥ \shortparallel ∥ | \shortparallel |
⌢ \smallfrown ⌢ | \smallfrown |
⊳ \vartriangleright ⊳ | \vartriangleright |
⊵ \trianglerighteq ⊵ | \trianglerighteq |
≑ o r ≑ \doteqdot or \Doteq ≑or≑ | \doteqdot or \Doteq |
≓ \risingdotseq ≓ | \risingdotseq |
≒ \fallingdotseq ≒ | \fallingdotseq |
≖ \eqcirc ≖ | \eqcirc |
≗ \circeq ≗ | \circeq |
≜ \triangleq ≜ | \triangleq |
≏ \bumpeq ≏ | \bumpeq |
≎ \Bumpeq ≎ | \Bumpeq |
∼ \thicksim ∼ | \thicksim |
≈ \thickapprox ≈ | \thickapprox |
≊ \approxeq ≊ | \approxeq |
∽ \backsim ∽ | \backsim |
⋍ \backsimeq ⋍ | \backsimeq |
⊨ \vDash ⊨ | \vDash |
⊩ \Vdash ⊩ | \Vdash |
⊪ \Vvdash ⊪ | \Vvdash |
∍ \backepsilon ∍ | \backepsilon |
∝ \varpropto ∝ | \varpropto |
≬ \between ≬ | \between |
⋔ \pitchfork ⋔ | \pitchfork |
◀ \blacktriangleleft ◀ | \blacktriangleleft |
▶ \blacktriangleright ▶ | \blacktriangleright |
p. ams箭头
展示 | 源码 |
---|---|
⇠ \dashleftarrow ⇠ | \dashleftarrow |
⇇ \leftleftarrows ⇇ | \leftleftarrows |
⇆ \leftrightarrows ⇆ | \leftrightarrows |
⇚ \Lleftarrow ⇚ | \Lleftarrow |
↞ \twoheadleftarrow ↞ | \twoheadleftarrow |
↢ \leftarrowtail ↢ | \leftarrowtail |
⇋ \leftrightharpoons ⇋ | \leftrightharpoons |
↰ \Lsh ↰ | \Lsh |
↫ \looparrowleft ↫ | \looparrowleft |
↶ \curvearrowleft ↶ | \curvearrowleft |
↺ \circlearrowleft ↺ | \circlearrowleft |
⇢ \dashrightarrow ⇢ | \dashrightarrow |
⇉ \rightrightarrows ⇉ | \rightrightarrows |
⇄ \rightleftarrows ⇄ | \rightleftarrows |
⇛ \Rrightarrow ⇛ | \Rrightarrow |
↠ \twoheadrightarrow ↠ | \twoheadrightarrow |
↣ \rightarrowtail ↣ | \rightarrowtail |
⇌ \rightleftharpoons ⇌ | \rightleftharpoons |
↱ \Rsh ↱ | \Rsh |
↬ \looparrowright ↬ | \looparrowright |
↷ \curvearrowright ↷ | \curvearrowright |
↻ \circlearrowright ↻ | \circlearrowright |
⊸ \multimap ⊸ | \multimap |
⇈ \upuparrows ⇈ | \upuparrows |
⇊ \downdownarrows ⇊ | \downdownarrows |
↿ \upharpoonleft ↿ | \upharpoonleft |
↾ \upharpoonright ↾ | \upharpoonright |
⇃ \downharpoonleft ⇃ | \downharpoonleft |
⇂ \downharpoonright ⇂ | \downharpoonright |
⇝ \rightsquigarrow ⇝ | \rightsquigarrow |
↭ \leftrightsquigarrow ↭ | \leftrightsquigarrow |
q. ams二元否定关系符和箭头
展示 | 源码 |
---|---|
∔ \dotplus ∔ | \dotplus |
⋉ \ltimes ⋉ | \ltimes |
⋓ o r ⋓ \Cup or \doublecup ⋓or⋓ | \Cup or \doublecup |
⊻ \veebar ⊻ | \veebar |
⊞ \boxplus ⊞ | \boxplus |
⊠ \boxtimes ⊠ | \boxtimes |
⋋ \leftthreetimes ⋋ | \leftthreetimes |
⋎ \curlyvee ⋎ | \curlyvee |
⋅ \centerdot ⋅ | \centerdot |
⋊ \rtimes ⋊ | \rtimes |
⋒ o r ⋒ \Cap or \doublecap ⋒or⋒ | \Cap or \doublecap |
⊼ \barwedge ⊼ | \barwedge |
⊟ \boxminus ⊟ | \boxminus |
⊡ \boxdot ⊡ | \boxdot |
⋌ \rightthreetimes ⋌ | \rightthreetimes |
⋏ \curlywedge ⋏ | \curlywedge |
⊺ \intercal ⊺ | \intercal |
⋇ \divideontimes ⋇ | \divideontimes |
∖ \smallsetminus ∖ | \smallsetminus |
⩞ \doublebarwedge ⩞ | \doublebarwedge |
⊝ \circleddash ⊝ | \circleddash |
⊚ \circledcirc ⊚ | \circledcirc |
⊛ \circledast ⊛ | \circledast |
r. ams二元运算符
源码 | 展示 |
---|---|
\dotplus | ∔ \dotplus ∔ |
\ltimes | ⋉ \ltimes ⋉ |
\Cup | ⋓ \Cup ⋓ |
\doublecup | ⋓ \doublecup ⋓ |
\veebar | ⊻ \veebar ⊻ |
\boxplus | ⊞ \boxplus ⊞ |
\boxtimes | ⊠ \boxtimes ⊠ |
\leftthreetimes | ⋋ \leftthreetimes ⋋ |
\curlyvee | ⋎ \curlyvee ⋎ |
\centerdot | ⋅ \centerdot ⋅ |
\rtimes | ⋊ \rtimes ⋊ |
\Cap | ⋒ \Cap ⋒ |
\doublecap | ⋒ \doublecap ⋒ |
\boxminus | ⊟ \boxminus ⊟ |
\boxdot | ⊡ \boxdot ⊡ |
\rightthreetimes | ⋌ \rightthreetimes ⋌ |
\curlywedge | ⋏ \curlywedge ⋏ |
\intercal | ⊺ \intercal ⊺ |
\divideontimes | ⋇ \divideontimes ⋇ |
\smallsetminus | ∖ \smallsetminus ∖ |
\doublebarwedge | ⩞ \doublebarwedge ⩞ |
\circleddash | ⊝ \circleddash ⊝ |
\circledcirc | ⊚ \circledcirc ⊚ |
\circledast | ⊛ \circledast ⊛ |
s. ams其它符号
源码 | 展示 |
---|---|
\hbar | ℏ \hbar ℏ |
\square | □ \square □ |
\vartriangle | △ \vartriangle △ |
\triangledown | ▽ \triangledown ▽ |
\lozenge | ◊ \lozenge ◊ |
\angle | ∠ \angle ∠ |
\diagup | ╱ \diagup ╱ |
\nexists | ∄ \nexists ∄ |
\eth | ð \eth ð |
\hslash | ℏ \hslash ℏ |
\blacksquare | ■ \blacksquare ■ |
\blacktriangle | ▲ \blacktriangle ▲ |
\blacktriangledown | ▼ \blacktriangledown ▼ |
\blacklozenge | ⧫ \blacklozenge ⧫ |
\measuredangle | ∡ \measuredangle ∡ |
\diagdown | ╲ \diagdown ╲ |
\Finv | Ⅎ \Finv Ⅎ |
\mho | ℧ \mho ℧ |
\Bbbk | k \Bbbk k |
\circledS | Ⓢ \circledS Ⓢ |
\complement | ∁ \complement ∁ |
\Game | ⅁ \Game ⅁ |
\bigstar | ★ \bigstar ★ |
\sphericalangle | ∢ \sphericalangle ∢ |
\backprime | ‵ \backprime ‵ |
\varnothing | ∅ \varnothing ∅ |
y. 常用符号
源码 | 展示 |
---|---|
\vartriangle | △ \vartriangle △ |
\dots | … \dots … |
\cdots | ⋯ \cdots ⋯ |
\prime | ′ \prime ′ |
\ell | ℓ \ell ℓ |
\mho | ℧ \mho ℧ |
\exists | ∃ \exists ∃ |
\partial | ∂ \partial ∂ |
\infty | ∞ \infty ∞ |
\surd | √ \surd √ |
\forall | ∀ \forall ∀ |
\triangle | △ \triangle △ |
4.5 举例
1. 代数与函数
- 一元二次方程式: a x 2 + b x + c = 0 ax^2 + bx + c = 0 ax2+bx+c=0,其中 a , b , c a, b, c a,b,c是实数常数, x x x是未知数。
- 二项式定理: ( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k}b^k (a+b)n=∑k=0n(kn)an−kbk,展开式中包含了二项式系数 ( n k ) \binom{n}{k} (kn)。
- 指数函数: f ( x ) = a x f(x) = a^x f(x)=ax,其中 a a a是实数且 a > 0 a > 0 a>0, x x x是实数变量。
2. 几何
- 勾股定理:直角三角形的边长关系, c 2 = a 2 + b 2 c^2 = a^2 + b^2 c2=a2+b2。
- 正弦定理:对于任意三角形, a sin A = b sin B = c sin C \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} sinAa=sinBb=sinCc,其中 a , b , c a, b, c a,b,c为三角形的边长, A , B , C A, B, C A,B,C为对应角度。
- 余弦定理:对于任意三角形, c 2 = a 2 + b 2 − 2 a b cos C c^2 = a^2 + b^2 - 2ab\cos C c2=a2+b2−2abcosC,其中 a , b , c a, b, c a,b,c为三角形的边长, C C C为对应角度。
3. 概率与统计
- 排列组合:排列 P ( n , k ) = n ! ( n − k ) ! P(n, k) = \frac{n!}{(n-k)!} P(n,k)=(n−k)!n!,组合 C ( n , k ) = ( n k ) = n ! k ! ( n − k ) ! C(n, k) = \binom{n}{k} = \frac{n!}{k!(n-k)!} C(n,k)=(kn)=k!(n−k)!n!,其中 n n n为元素总数, k k k为选择的元素个数。
- 期望:离散型随机变量的期望 E ( X ) = ∑ i x i ⋅ P ( X = x i ) E(X) = \sum_{i} x_i \cdot P(X=x_i) E(X)=∑ixi⋅P(X=xi),连续型随机变量的期望 E ( X ) = ∫ − ∞ ∞ x ⋅ f ( x ) d x E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx E(X)=∫−∞∞x⋅f(x)dx。
4. 微积分
- 导数:函数 f ( x ) f(x) f(x)在点 x x x处的导数为 f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} f′(x)=limh→0hf(x+h)−f(x),表示函数在该点的变化率。
- 不定积分:函数 f ( x ) f(x) f(x)的不定积分为 ∫ f ( x ) d x \int f(x) dx ∫f(x)dx,表示 f ( x ) f(x) f(x)的原函数。
- 定积分:函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a, b] [a,b]上的定积分为 ∫ a b f ( x ) d x \int_{a}^{b} f(x) dx ∫abf(x)dx,表示曲线与 x x x轴所围成的面积。
5. 线性代数
- 矩阵乘法:若 A A A是 m × n m \times n m×n矩阵, B B B是 n × p n \times p n×p矩阵,则 C = A B C = AB C=AB为 m × p m \times p m×p矩阵,其中 C i j = ∑ k = 1 n A i k ⋅ B k j C_{ij} = \sum_{k=1}^{n} A_{ik} \cdot B_{kj} Cij=∑k=1nAik⋅Bkj。
矩阵的3种表示方法:
第一种
bmatrix
用于方括号包围的矩阵
$$
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
\end{bmatrix}\tag{1}
$$
[ 1 2 3 4 5 6 ] (1) \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ \end{bmatrix} \tag{1} [142536](1)
第二种: 用于小括号包围的矩阵;
$$
\begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{pmatrix}\tag{2}
$$
( a b c d e f g h i ) (2) \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \\ \end{pmatrix}\tag{2} adgbehcfi (2)
第三种:用于双竖线包围的矩阵(行列式)。
$$
\begin{vmatrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{vmatrix}\tag{3}
$$
∣ a b c d e f g h i ∣ (3) \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \\ \end{vmatrix}\tag{3} adgbehcfi (3)
可以使用
dots
命令来表示带省略号的矩阵
在LaTeX中,我们可以使用dots
命令来表示带省略号的矩阵。有三种常用的省略号:水平省略号(\hdots)、垂直省略号(\vdots)和对角线省略号(\ddots)。这些省略号可以用于不同大小的矩阵。
$$
\begin{bmatrix}
b_{11} & b_{12} & \cdots & b_{14} \\
b_{21} & b_{22} & \cdots & b_{24} \\
\vdots & \vdots & \ddots & \vdots \\
b_{41} & b_{42} & \cdots & b_{44} \\
\end{bmatrix}
$$
[ b 11 b 12 ⋯ b 14 b 21 b 22 ⋯ b 24 ⋮ ⋮ ⋱ ⋮ b 41 b 42 ⋯ b 44 ] \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{14} \\ b_{21} & b_{22} & \cdots & b_{24} \\ \vdots & \vdots & \ddots & \vdots \\ b_{41} & b_{42} & \cdots & b_{44} \\ \end{bmatrix} b11b21⋮b41b12b22⋮b42⋯⋯⋱⋯b14b24⋮b44
- 特征值与特征向量:对于 n × n n \times n n×n矩阵 A A A,若存在实数 λ \lambda λ和非零向量 v v v,满足 A v = λ v Av = \lambda v Av=λv,则 λ \lambda λ为 A A A的特征值, v v v为对应的特征向量。
- 行列式:对于 n × n n \times n n×n矩阵 A A A,其行列式为 det ( A ) = ∑ σ ∈ S n sgn ( σ ) ⋅ ∏ i = 1 n A i , σ ( i ) \det(A) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \cdot \prod_{i=1}^{n} A_{i,\sigma(i)} det(A)=∑σ∈Snsgn(σ)⋅∏i=1nAi,σ(i),其中 S n S_n Sn为 n n n阶置换群, sgn ( σ ) \text{sgn}(\sigma) sgn(σ)为置换的符号。注:行列式的写法在上面已经有介绍,不在赘述
6. 多元微积分
- 偏导数:函数 f ( x , y ) f(x, y) f(x,y)关于变量 x x x的偏导数为 ∂ f ∂ x = lim h → 0 f ( x + h , y ) − f ( x , y ) h \frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h} ∂x∂f=limh→0hf(x+h,y)−f(x,y),表示函数在 x x x方向上的变化率。
- 二重积分:函数 f ( x , y ) f(x, y) f(x,y)在区域 D D D上的二重积分为 ∬ D f ( x , y ) d A \iint_{D} f(x, y) dA ∬Df(x,y)dA,表示 f ( x , y ) f(x, y) f(x,y)在 D D D上的面积或体积。
- 梯度:对于函数 f ( x , y , z ) f(x, y, z) f(x,y,z),其梯度为 ∇ f = ⟨ ∂ f ∂ x , ∂ f ∂ y , ∂ f ∂ z ⟩ \nabla f = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \rangle ∇f=⟨∂x∂f,∂y∂f,∂z∂f⟩,表示函数在该点上升最快的方向。
5. 图(mermaid)
5.1 概述
关于 Mermaid,Mermaid 允许您使用文本和代码创建图表和可视化内容。它是一个基于 JavaScript 的图表和绘图工具,通过渲染受 Markdown 启发的文本定义,可以动态地创建和修改图表。
Mermaid 是一个基于 JavaScript 的图表和绘图工具,它使用受 Markdown 启发的文本定义和渲染器来创建和修改复杂的图表。Mermaid 的主要目的是帮助文档跟上开发的步伐。
绘图和文档编制消耗了宝贵的开发时间,并且很快就会过时。但是没有图表或文档会破坏生产力,对组织的学习造成伤害。Mermaid 通过让用户能够创建易于修改的图表来解决这个问题,它还可以成为生产脚本(以及其他代码片段)的一部分。
由于比较多,我先放些文档在这,如果有需要我会把将这部分加上:
下面这位JackSerin作者写的专栏写的教程非常详细
https://blog.csdn.net/sinat_29047129/article/details/104061103
0. 参考文档
-
[Mermaid](About Mermaid | Mermaid)
-
https://www.mathjax.org/
-
https://blog.csdn.net/guikunchen/article/details/88652407
-
https://www.latex4technics.com/
-
https://www.overleaf.com/articles/the-comprehensive-latex-symbol-list/czzxggzcyyqj.pdf