1.损失函数不一样,逻辑回归的损失函数是log loss,svm的损失函数是hinge loss2.损失函数的优化方法不一样,逻辑回归用剃度下降法优化,svm用smo方法进行优化3.逻辑回归侧重于所有点,svm侧重于超平面边缘的点4.svm的基本思想是在样本点中找到一个最好的超平面。5对非线性问题的处理方式不同,LR主要靠特征构造,必须组合交叉特征,特征离散化。SVM也可以这样,还可以通过kernel。
SVM与LR区别
最新推荐文章于 2021-03-30 00:59:48 发布
1.损失函数不一样,逻辑回归的损失函数是log loss,svm的损失函数是hinge loss2.损失函数的优化方法不一样,逻辑回归用剃度下降法优化,svm用smo方法进行优化3.逻辑回归侧重于所有点,svm侧重于超平面边缘的点4.svm的基本思想是在样本点中找到一个最好的超平面。5对非线性问题的处理方式不同,LR主要靠特征构造,必须组合交叉特征,特征离散化。SVM也可以这样,还可以通过kernel。