欧几里得算法及其应用

1)求最大公约数

int gcd(int a,int b)
{
	if(b==0) return a;
	return gcd(b,a%b); 
} 

2)求最小公倍数

int lcm(int a,int b)
{
	return a*b/gcd(a,b);
}

3)扩展欧几里得算法

求 ax+by=c的方程的解:

先求出ax+by=gcd(a,b) 的一个解(x,y) ,为求出这个解,要找出一个递推式,如下:

根据ax+by=gcd(a,b) <=> bx+(a%b)y = gcd(a,b) 有整数解(x1,y1),且 x = y1, y = x1-[a/b]*y1

证明:因为a-b*[a/b]=a%b ,将x,y带入方程就是原式子了

那么可以写出程序:

int gcdEx(int a,int b,int& x,int& y)
{   //求ax+by=gcd(a,b) 的整数解 返回gcd(a,b); 
	if(b==0) {
		x=1; y=0; return a;
	}
	int x1,y1;
	int gcd=gcdEx(b,a%b,x1,y1);
	x=y1;
	y=x1-a/b*y1;
	return gcd;
}

求出ax+by=gcd(a,b) 的一个解(x,y) 后,就可以求ax+by=c了

 但首先要符合:ax+by=c 有解的充要条件是 gcd(a,b)|c  即c可以整除gcd(a,b)

设 d= gcd(a,b) ,k=c/d;

若ax+by = d的解是 (x1,y1) 则 ax+by = c的解集是: x = k*x1 + t*(b/d) y = k*y1 – t*(a/d) t为任意整数


4)扩展欧几里得算法求ax ≡ c(mod b) 

ax≡c(mod b)等价于ax+by=c,所以问题就转化为方程中求x的值

设 d = gcd(a,b), k = c/d, ax+by = d的解是 (x1,y1) 则 

上式中 x = k*x1 + t*(b/d)  t为任意整数  

其中解一共有d个

所以 t=0~(d-1)


其中ax ≡ c(mod b) 的最小非负整数解:

设s=b/d;

所以答案就是 x = (k*x1%s + s) % s

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值