数据随机抽样
在大规模数据量的数据分析及建模任务中,往往针对全量数据进行挖掘分析时会十分耗时和占用集群资源,因此一般情况下只需要抽取一小部分数据进行分析及建模操作。下面罗列一些常用的数据抽样方法。
1、随机数排序抽样(rand())
-
order by 与 rand() 结合
- 说明:limit限制抽样条数;order by 全局排序耗时长。
- 示例:
select * from table_name order by rand() limit 1000;
-
distribute 、 sort 、 rand() 结合
- 说明:limit限制抽样条数;distribute和sort 根据rand()分桶排序,保证数据在mapper和reducer阶段随机分布。
- 示例:
select * from table_name distribute by rand() sort by rand() limit 1000;
-
row_number() 、 rand() 结合
- 说明:这种方式可以根据特定业务场景抽取百分比数据;row_number() 开窗后,根据业务需求分组,按照rand()排序,排序值随机,根据count() over() 得到窗口内总数据量。通过排序值/总数据量 设定阈值来抽取数据。
- 示例:
-- 根据用户注册日期,每日随机抽取20%的用户。 select t1.cust_id ,t1.nums ,t1.rnk from ( select cust_id ,count(cust_id) over(partition by cust_type,register_date) as nums ,row_number() over(partition by cust_type,register_date order by rand()) as rnk from table_name ) t1 where t1.rnk/t1.nums <= 0.2
2、数据块抽样(tablesample())
- 根据 hive 表数据的大小按比例抽取数据
- 功能:根据 hive 表数据的大小按比例抽取数据。如:抽取原 hive 表中 10%的数据
- 示例:
-- tablesample(n percent): 百分比(percent) -- 语法:tablesample(n percent) select * from table_name tablesample(10 percent); -------------------------------------------------------- -- tablesample(n M) 指定抽样数据的大小,单位为 M -- 语法:tablesample(n M) -- 按照数据的字节数进行采样 -- 支持 b/B, k/K, m/M, g/G select * from table_name tablesample(1 M); -------------------------------------------------------- -- tablesample(n rows) 指定抽样数据的行数,其中 n 代表每个 map 任 取 n 行数 据,map 数量可通过 hive 表的简单查询语句确认(关键词:numbe of mappers: x) -- 语法:tablesample(n rows) select * from table_name tablesample(10 rows);
3、分桶抽样
hive 中分桶其实就是根据某一个字段 Hash 取模,放入指定数据的桶中,比如将表 table_1 按照 ID 分成 100 个桶,其算法是 hash(id) % 100,这样,hash(id) % 100 = 0 的数据被放到第一个桶中,hash(id) % 100 = 1 的记录被放到第二个桶中。创建分桶表的关键语句为:CLUSTER BY 语句。
-
语法:TABLESAMPLE (BUCKET x OUT OF y [ON colname])
-
说明: x 是要抽样的桶编号,桶编号从 1 开始,colname 表示抽样的列,y 表示桶的数量。
-
示例:
-- 示例1
select
*
from
table_name
tablesample(bucket 1 out of 10 on rand())
-- 示例2
-- 如果采样的列与CLUSTERED BY 列(即分桶列)相同,则采样的效率会更高。
select
name
FROM
employee
tablesample(BUCKET 1 OUT OF 2 ON emp_id) a;
```