题目描述:
这里有 d 个一样的骰子,每个骰子上都有 f 个面,分别标号为 1, 2, …, f。
我们约定:掷骰子的得到总点数为各骰子面朝上的数字的总和。
如果需要掷出的总点数为 target,请你计算出有多少种不同的组合情况(所有的组合情况总共有 f^d 种),模 10^9 + 7 后返回。
示例 1:
输入:d = 1, f = 6, target = 3
输出:1
示例 2:
输入:d = 2, f = 6, target = 7
输出:6
示例 3:
输入:d = 2, f = 5, target = 10
输出:1
示例 4:
输入:d = 1, f = 2, target = 3
输出:0
示例 5:
输入:d = 30, f = 30, target = 500
输出:222616187
提示:
1 <= d, f <= 30
1 <= target <= 1000
很明显要使用动态规划,但是外层循环是骰子的数量,而不是target,比赛的时候这个搞反了,一直出不来结果。。。
前一个和后一个的区别就是面值+1
public int numRollsToTarget(int d, int f, int target) {
// d个骰子
int dp[][] = new int[d + 1][d * f + 1];
if(target > d * f){
return 0;
}
// 初始化dp数组
dp[0][0] = 1;
for (int i = 1; i <= f; i++) {
dp[1][i] = d;
}
for (int i = 2; i <= d; i++) {
for (int j = 1; j <= target; j++) {
for (int k = 1; k < f + 1; k++) {
if(j - k <= 0){
continue;
}
dp[i][j] += dp[i-1][j - k];
dp[i][j] %= (1000000000 + 7);
}
}
}
return dp[d][target];
}