LeetCode-213. 打家劫舍 II

难度:【中等】

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

示例:

示例 1:

输入: [2,3,2]
输出: 3
解释: 你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例 2:

输入: [1,2,3,1]
输出: 4
解释: 你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。

解题思路:

此题是 198. 打家劫舍 的拓展版: 唯一的区别是此题中的房间是环状排列的(即首尾相接),而198.题中的房间是单排排列的;而这也是此题的难点。

环状排列意味着第一个房子和最后一个房子中只能选择一个偷窃,因此可以把此环状排列房间问题约化为两个单排排列房间子问题:

  • 在不偷窃第一个房子的情况下,最大金额是 p1 ;
  • 在不偷窃最后一个房子的情况下,最大金额是p2 。

综合偷窃最大金额: 为以上两种情况的较大值,即 max(p1,p2) 。

代码实现:

class Solution {
    public int rob(int[] nums) {
        int n = nums.length;
        if (n <= 1) {
            return n == 0?0:nums[0];
        }
        return Math.max(robHelper(Arrays.copyOfRange(nums,0,nums.length-1)),
                        robHelper(Arrays.copyOfRange(nums,1,nums.length)));
    }

    public int robHelper(int[] nums) {
        int n = nums.length;
        if (n == 0) {
            return 0;
        }
        int[] dp = new int[n+1];
        dp[0] = 0;
        dp[1] = nums[0];
        for(int i=2;i<=n;i++){
            dp[i] = Math.max(dp[i-1],dp[i-2] + nums[i-1]);
        }
        return dp[n];
    }
}

复杂度分析

  • 时间复杂度:O(n)。其中 n为房子的数量。
  • 空间复杂度:O(n)。

优化实现:

class Solution {
    public int rob(int[] nums) {

        int n = nums.length;
        if (n <= 1) {
            return n == 0?0:nums[0];
        }

        return Math.max(robHelper(Arrays.copyOfRange(nums,0,nums.length-1)),
                        robHelper(Arrays.copyOfRange(nums,1,nums.length)));
    }

    public int robHelper(int[] nums) {
        int dp = 0,dp0 = 0;
        for(int i=0;i<nums.length;i++){
            int dp1 = Math.max(dp,dp0+nums[i]);
            dp0 = dp;
            dp = dp1;
        }
        return dp;
    }
}

复杂度分析

  • 时间复杂度:O(n)。其中 n为房子的数量。
  • 空间复杂度:O(1)。
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页