点击链接PAT乙级-AC全解汇总
题目:
如果某个数 K 的平方乘以 N 以后,结果的末尾几位数等于 K,那么就称这个数为“N-自守数”。例如 3×922
=25392,而 25392 的末尾两位正好是 92,所以 92 是一个 3-自守数。
本题就请你编写程序判断一个给定的数字是否关于某个 N 是 N-自守数。
输入格式:
输入在第一行中给出正整数 M(≤20),随后一行给出 M 个待检测的、不超过 1000 的正整数。
输出格式:
对每个需要检测的数字,如果它是 N-自守数就在一行中输出最小的 N 和 NK2 的值,以一个空格隔开;否则输出 No
。注意题目保证 N<10。
输入样例:
3
92 5 233
输出样例:
3 25392
1 25
No
我的代码:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int M;
cin>>M;
for(int i=0;i<M;i++)
{
int num;
cin>>num;
int t=num,a=1,N=1;
while(t)
{
a*=10;
t/=10;
}
while(N<10)
{
if((N*num*num)%a==num)
{
cout<<N<<" "<<N*num*num<<endl;
break;
}
else N++;
}
if(N>=10)cout<<"No"<<endl;
}
return 0;
}