分析
非常水的np状态转移的题
定义
D
P
[
i
]
[
j
]
[
k
]
DP[i][j][k]
DP[i][j][k]表示三堆石子分别剩下i,j,k时的np状态。
然后暴力转移会T。不妨观察转移的几种形式:
只用第一堆:j,k不变,i任意。
只用第二堆:i,k不变,j任意。
只用第三堆:i,j不变,k任意。
只用2,3堆,i不变,j-k不变
只用1,3堆,j不变,k-i任意
只用1,2堆,k不变,i-j任意
三堆都用,i-j,j-k均不变。
那么只需要记录这几种状态之前是否有必败态。只要其中一个有,那当前就是必胜态。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define SF scanf
#define PF printf
#define MAXN 310
using namespace std;
bool dp[MAXN][MAXN][MAXN];
bool f[3][MAXN][MAXN],d[3][MAXN*2][MAXN*2],all[MAXN*2][MAXN*2];
void prepare(){
for(int i=0;i<=300;i++)
for(int j=0;j<=300;j++)
for(int k=0;k<=300;k++){
if(f[0][j][k]||f[1][i][k]||f[2][i][j]||d[0][i][k-j+MAXN]||d[1][j][k-i+MAXN]||d[2][k][j-i+MAXN]||all[j-i+MAXN][k-j+MAXN])
dp[i][j][k]=1;
else{
f[0][j][k]=1;
f[1][i][k]=1;
f[2][i][j]=1;
d[0][i][k-j+MAXN]=1;
d[1][j][k-i+MAXN]=1;
d[2][k][j-i+MAXN]=1;
all[j-i+MAXN][k-j+MAXN]=1;
}
}
}
int main(){
freopen("stone.in","r",stdin);
freopen("stone.out","w",stdout);
prepare();
int t;
SF("%d",&t);
while(t--){
int x,y,z;
SF("%d%d%d",&x,&y,&z);
if(dp[x][y][z])
PF("Yes\n");
else
PF("No\n");
}
}