【随机化】【树形DP】【状压DP】BZOJ5232[Lydsy2017省队十连测]好题

26 篇文章 0 订阅
2 篇文章 0 订阅

分析

k很小。。。
如果所有颜色都在k以内,那么直接状压即可。

如果不在呢?那么随机将某种颜色,映射到k以内的另一个颜色。换言之,我们认为所有映射到同一位置的颜色相同。
显然,除了最优策略,其他的情况一定不优于最优策略。

那么,一次的正确性显然就是: k ! k k \frac {k!} {k^k} kkk!即最优的k个颜色:能找出最优解的情况/总的映射情况。
一次的正确率大约为0.03
做个50次左右就接近1了

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<set>
#define SF scanf
#define PF printf
#define MAXN 10010
using namespace std;
int n,k,col[MAXN],cnt[MAXN],sum,cntc[MAXN],ans;
vector<int> a[MAXN];
int dp[MAXN][35],colx[MAXN];
void dfs(int x,int fa){
	dp[x][(1<<(col[x]-1))]=1;
	for(int i=0;i<int(a[x].size());i++){
		int u=a[x][i];
		if(u==fa)
			continue;
		dfs(u,x);
		for(int mask1=(1<<k)-1;mask1>=0;mask1--)
			for(int mask2=0;mask2<(1<<k);mask2++){
				if(dp[x][mask1]>n||dp[u][mask2]>n)
					continue;
				dp[x][mask1|mask2]=min(dp[x][mask1|mask2],dp[x][mask1]+dp[u][mask2]);
			}
	}
	ans=min(ans,dp[x][(1<<k)-1]);
}
int c2t[MAXN];
int main(){
	srand(20010919);
//	freopen("hao.in","r",stdin);
//	freopen("hao.out","w",stdout);
	SF("%d%d",&n,&k);
	int maxv=0;
	for(int i=1;i<=n;i++)
		SF("%d",&colx[i]);
	int u,v;
	for(int i=1;i<n;i++){
		SF("%d%d",&u,&v);
		a[u].push_back(v);
		a[v].push_back(u);
	}
	ans=n;
	int tims=50;
	while(tims--){
		memset(dp,0x3f3f3f3f,sizeof dp);
		for(int i=1;i<=n;i++)
			c2t[i]=rand()%k+1;
		for(int i=1;i<=n;i++)
			col[i]=c2t[colx[i]];
		dfs(1,0);
	}
	PF("%d",ans);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值