目标定位
特征点检测
目标检测(滑动窗口方法)
用不同大小窗口滑动截取小图片输入卷积中分类1、0
卷积的滑动窗口实现
转换全连接层为卷积层
Bounding Box预测(yolo基础)
检测目标的中心点位于哪个框就归属于哪个框,输出为3*3*8
c1表示是否有行人,c2表示是否有汽车,c3表示是否有摩托车
交并比(IOU):判断检测效果的标准
非极大值抑制:检测算法会对用一个物体检测到多次,为了对同一物体只检测到一次
Anchor Boxes:之前每个格子只能检测出一个对象,要使得每个格子检测出多个对象
Yolo算法
局部区域卷积:R-CNN
人脸识别的关键问题:一次学习问题
数据库只有每个人的一张图片
定义一个比较两张图片相似度的函数
Siamese网络:比较两张图片相似度的网络,讲过相同参数的网络模型后得到的128位编码应该相似
Triple损失:三元组损失函数
借助逻辑回归把人脸识别当做二分类任务
之前计算相似度网络的编码输出作为逻辑回归的输入
神经风格迁移
深度卷积在学什么?
代价函数
内容代价函数
风格代价函数
风格相似矩阵
卷积推广到三维