5、 卷积神经网络-----目标检测及特殊应用

目标定位

特征点检测

目标检测(滑动窗口方法)

用不同大小窗口滑动截取小图片输入卷积中分类1、0

卷积的滑动窗口实现

转换全连接层为卷积层

Bounding Box预测(yolo基础)

检测目标的中心点位于哪个框就归属于哪个框,输出为3*3*8

c1表示是否有行人,c2表示是否有汽车,c3表示是否有摩托车

交并比(IOU):判断检测效果的标准

非极大值抑制:检测算法会对用一个物体检测到多次,为了对同一物体只检测到一次

Anchor Boxes:之前每个格子只能检测出一个对象,要使得每个格子检测出多个对象

Yolo算法

局部区域卷积:R-CNN

 

人脸识别的关键问题:一次学习问题

数据库只有每个人的一张图片

定义一个比较两张图片相似度的函数

Siamese网络:比较两张图片相似度的网络,讲过相同参数的网络模型后得到的128位编码应该相似

Triple损失:三元组损失函数

借助逻辑回归把人脸识别当做二分类任务

之前计算相似度网络的编码输出作为逻辑回归的输入

神经风格迁移

深度卷积在学什么?

代价函数

内容代价函数

风格代价函数

风格相似矩阵

卷积推广到三维

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值