MATLAB牛顿迭代法

MATLAB牛顿迭代法

  • 牛顿迭代法(用于搜索零点):
    在这里插入图片描述
    通过函数   f ( x ) = 0 \ f(x) =0  f(x)=0的泰勒级数展开
      f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f ( n ) ( x 0 ) n ! ( x − x 0 ) n \ f(x) =f(x_0) +\frac {f'(x_0)} {1!}(x-x_0)+\frac {f''(x_0)} {2!}(x-x_0)^2+...+\frac {f^{(n)}(x_0)} {n!}(x-x_0)^n  f(x)=f(x0)+1!f(x0)(xx0)+2!f(x0)(xx0)2+...+n!f(n)(x0)(xx0)n
    取级数展开式的常数项和一次项:   f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) = 0 \ f(x_0) +f'(x_0)(x-x_0)=0  f(x0)+f(x0)(xx0)=0
    得到迭代函数:   x = x 0 − f ( x 0 ) f ′ ( x 0 ) \ x=x_0 -\frac {f(x_0)} {f'(x_0)}  x=x0f(x0)f(x0)

这里是一个一元函数的简单代码:

%牛顿迭代法
function [x,n,Xn,Yn] = newiteration(fun,dfun,x0,EPS)
% fun为目标函数,dfun为目标函数的一阶导数,x0为起始点,EPS为精度
a=feval(fun,x0);
b=a+1;
n=0;
%建立画图的点
Xn = zeros(5,1);
Yn = zeros(5,1);
while(abs(a-b) >= EPS) 
        a = feval(fun,x0) ;
        df = feval(dfun,x0);
        Xn(n+1,1) = x0;
        Yn(n+1,1) = a;
        if (feval(dfun,x0) == 0)
            break
        else
            x0 = x0 - a/df;
        end
        b = feval(fun,x0);  
        n = n + 1;
end
x = x0;

调用函数:

%% 调用函数
clear all
clc
% syms x
fun=inline('x^2 - 9','x');
dfun = inline('2*x','x');
Xn = zeros(5,1);
Yn = zeros(5,1);
x0 = 1;
EPS = 0.001;
[x,n,Xn,Yn] = newiteration(fun,dfun,x0,EPS)
figure 
plot(Xn,Yn,'k-','color','red')
hold on
x = 0:0.1:7;
y = x.^2 - 9;
y2 = zeros(1,71); 
plot(x,y,'color','b')
plot(x,y2,'color','black')

运行结果:

x =3.000000001396984
n =5

迭代过程:
迭代过程
如果需要减少计算,可以通过将   f ′ ( x 0 ) \ f'(x_0)  f(x0)设置为定值,收敛速度会减慢。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值