图论与网络流理论 3. 匹配理论 2:二部图的匹配

M M M是二部图 G = ( X , Y ) G=(X,Y) G=(X,Y)的一个匹配,如果 M M M饱和 X X X中的每一个顶点,则称 M M M饱和 X X X

Hall定理

G = ( X , Y ) G=(X,Y) G=(X,Y) G G G有饱和 X X X的匹配,当且仅当对 ∀ S ⊂ X \forall S\subset X SX,有 ∣ N ( S ) ∣ ≥ S |N(S)|\ge S N(S)S。其中 N ( S ) N(S) N(S)表示 S S S的所有邻点之集。

证明

必要性:

如果 G G G有饱和 X X X的匹配 M M M,那么对于 ∀ S ⊂ X \forall S\subset X SX,因为 S S S的顶点在 M M M下与 N ( S ) N(S) N(S)中的某些(可能不是全部)顶点一一配对,因此就有 ∣ N ( S ) ∣ ≥ ∣ S ∣ |N(S)|\ge |S| N(S)S。( N ( S ) N(S) N(S)的顶点数至少也要和 S S S中的一样多)


充分性:

G = ( X , Y ) G=(X,Y) G=(X,Y),且有对 ∀ S ⊂ X \forall S\subset X SX,有 ∣ N ( S ) ∣ ≥ ∣ S ∣ |N(S)|\ge |S| N(S)S。使用反证法证明。

假设不存在饱和 X X X的匹配,那么 G G G的最大匹配 M ∗ M^* M都无法饱和 X X XX XX中的全部顶点。设 u u u X X X中的一个 M ∗ M^* M非饱和点,并定义:

A = { v ∣ v ∈ V ( G ) 且 u 到 v 有 M ∗ 交 错 路 } A=\{v\mid v\in V(G)且u到v有M^*交错路\} A={vvV(G)uvM}

由于 M ∗ M^* M是最大匹配,因此不能有增广路。由于以 u u u为起点的交错路已经有了一个非饱和顶点,因此 u u u A A A唯一 M ∗ M^* M非饱和点。

定义:
S = A ∩ X T = A ∩ Y \begin{aligned} S&=A\cap X\\ T&=A\cap Y \end{aligned} ST=AX=AY

在这里插入图片描述

由于 S − { u } S-\{u\} S{u}中的每一个顶点,都会与 T T T中的某一个顶点一一配对(由于 T T T就是根据存在交错路来的,因此 T T T中的顶点一定有点与之相连;而且 T T T中的每一个顶点只会一个 S S S中的顶点配对,否则就有两条 M ∗ M^* M中的边关联到了同一个顶点),因此可以得到:
∣ T ∣ = ∣ S ∣ − 1            ( ∗ ) |T|=|S|-1~~~~~~~~~~(*) T=S1          ()

接下来要证明 N ( S ) = T N(S)=T N(S)=T

  • T ⊂ N ( S ) T\subset N(S) TN(S)【已知: u u u t t t有交错路;要证明: t t t S S S中的某一个顶点相邻】 对于 T T T中的每一个顶点 t t t,从 u u u t t t都有一条交错路,而在交错路中, t t t的前一个顶点必定属于 S S S,且与顶点 t t t相邻,因此就有 t ∈ N ( S ) t\in N(S) tN(S)
  • N ( S ) ⊂ T N(S)\subset T N(S)T【已知: t t t s s s中的某一顶点相邻;要证明: u u u t t t有有交错路】 对于 N ( S ) N(S) N(S)中的每一个顶点 t t t,不妨设其是 S S S中顶点 s s s的邻点。
    • 如果 u u u s s s的交错路经过了 t t t,那么该交错路的 ( u , t ) (u,t) (u,t)一定也是交错路(交错路的一部分一定也是交错路),因此 t ∈ T t\in T tT
    • 如果 u u u s s s的交错路没有经过 t t t,那么 u u u s s s的最后一条边一定属于 M ∗ M^* M。由于 t ∈ N ( S ) t\in N(S) tN(S),因此 s s s一定可达 t t t,所以这一条 ( u , s ) (u,s) (u,s)的交错路一定可以继续延伸变成 ( u , t ) (u,t) (u,t)

所以就有:
N ( S ) = T            ( ∗ ∗ ) N(S)=T~~~~~~~~~~(**) N(S)=T          ()

最后有:
∣ N ( S ) ∣ = ∣ T ∣ = ∣ S − 1 ∣ < ∣ S ∣ |N(S)|=|T|=|S-1|<|S| N(S)=T=S1<S

∣ N ( S ) ∣ ≥ ∣ S ∣ |N(S)|\ge |S| N(S)S矛盾。

推论

G = ( X , Y ) G=(X,Y) G=(X,Y),如果 X X X每一个顶点至少关联 k k k条边, Y Y Y中的每一个顶点至多关联 k k k条边,则 G G G中存在饱和 X X X的匹配。

∀ S ⊂ X \forall S\subset X SX S S S至少关联 k ∣ S ∣ k|S| kS条边(直接乘),而这 k ∣ S ∣ k|S| kS条边又至少关联 Y Y Y中的 ∣ S ∣ |S| S个顶点(直接除),因此根据Hall定理即可证明。


G = ( X , Y ) G=(X,Y) G=(X,Y)具有完美匹配的充分必要条件是: ∣ X ∣ = ∣ Y ∣ |X|=|Y| X=Y且对 ∀ S ⊂ X \forall S\subset X SX(或者 Y Y Y),均有 ∣ N ( S ) ∣ ≥ ∣ S ∣ |N(S)|\ge |S| N(S)S

挺显然的。


G G G k k k-正则二部图,则 G G G k k k个边不重的完美匹配

  1. 证明 G G G有完美匹配
    由于 G G G k k k-正则二部图,因此有 k ∣ X ∣ = E ( G ) = k ∣ Y ∣ k|X|=E(G)=k|Y| kX=E(G)=kY,即 ∣ X ∣ = ∣ Y ∣ |X|=|Y| X=Y
    任取 S ⊂ X S\subset X SX,令 E 1 E_1 E1 G G G中与 S S S关联的边, E 2 E_2 E2 G G G中与 N ( S ) N(S) N(S)关联的边。根据定义很容易看出, E 1 ⊂ E 2 E_1\subset E_2 E1E2 N ( S ) N(S) N(S)中的顶点一定会与 S S S中的顶点有关联边,而 N ( S ) N(S) N(S)同时还有可能与其他的非 S S S顶点有关联边)。
    根据正则性, k ∣ N ( S ) ∣ = ∣ E 2 ∣ ≥ ∣ E 1 ∣ = k ∣ S ∣ k|N(S)|=|E_2|\ge |E_1|=k|S| kN(S)=E2E1=kS,因此就有 ∣ N ( S ) ∣ ≥ ∣ S ∣ |N(S)|\ge |S| N(S)S,根据之前的推论,存在完美匹配

  2. 证明有 k k k个边不重的完美匹配(归纳)
    k = 1 k=1 k=1显然
    假设对于所有 k k k正则二部图都成立,则对于 ( k + 1 ) (k+1) (k+1)正则二部图,根据第一部的证明,一定可以找出一个完美匹配 M M M,那么 G ′ = G − M G'=G-M G=GM依然是一个正则二部图(减去 M M M对于每一个顶点的度都同时减少 1 1 1),而且是 k k k正则。根据归纳假设证毕。


完全二部图 K n , n K_{n,n} Kn,n n n n个边不重的完美匹配

显然。


G = ( X , Y ) G=(X,Y) G=(X,Y),而且 ∣ X ∣ = ∣ Y ∣ = n |X|=|Y|=n X=Y=n,如果有最小度 δ ( G ) ≥ n 2 \delta(G)\ge \frac n2 δ(G)2n,那么 G G G有完美匹配。

反证法。如果 G G G没有完美匹配,那么一定存在一个 S ⊂ X S\subset X SX,使得 ∣ N ( S ) ∣ < ∣ S ∣ |N(S)|<|S| N(S)<S

考虑 ∣ N ( S ) ∣ ≥ δ ( G ) |N(S)|\ge \delta(G) N(S)δ(G),其实是很显然的。只有当 S S S只有一个顶点而且该顶点在 G G G中度最小的时候,才会有 ∣ N ( S ) ∣ = δ ( G ) |N(S)|=\delta(G) N(S)=δ(G),其他情况显然是要大于的。因此就有 ∣ S ∣ > ∣ N ( S ) ∣ ≥ δ ( G ) ≥ n 2 |S|>|N(S)|\ge \delta(G)\ge \frac n2 S>N(S)δ(G)2n

考虑 Y Y Y的那一边。由于 ∣ Y ∣ = ∣ X ∣ ≥ ∣ S ∣ > ∣ N ( S ) ∣ |Y|=|X|\ge |S|>|N(S)| Y=XS>N(S),因此 Y − N ( S ) ≠ ∅ Y-N(S)\neq \varnothing YN(S)=。令 u ∈ Y − N ( S ) u\in Y-N(S) uYN(S),一定有 N ( u ) ⊂ X − S N(u)\subset X-S N(u)XS(如果有每一个点 v ∈ N ( u ) v\in N(u) vN(u)同时 ∈ S \in S S,那么 u u u就是在 N ( S ) N(S) N(S)里的了)。因此可以得到:

δ ( G ) ≤ d G ( u ) = ∣ N ( u ) ∣ ≤ ∣ X ∣ − ∣ S ∣ < n − n 2 = n 2 \delta(G)\le d_G(u)=|N(u)|\le |X|-|S|<n-\frac n2=\frac n2 δ(G)dG(u)=N(u)XS<n2n=2n

和条件 δ ( G ) ≥ n 2 \delta(G)\ge \frac n2 δ(G)2n矛盾。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值