关于pytorch与CUDA版本匹配问题

项目场景:

在跑CLAM实验时遇到如下问题:
RuntimeError: CUDA error: no kernel image is available for execution on the device


问题描述

使用pytorch训练深度学习模型遇到如上问题。


原因分析:

查看相关资料得知这是由CUDA与pytorch版本不匹配导致的,且查看当前pytorch对应的CUDA版本未10.X,而服务器所用CUDA版本为11.4,因而需要对pytorch版本进行调整。


解决方案:

第一步本人尝试安装最新版本的pytorch
1、登录pytorch官网 https://pytorch.org/get-started/locally/
2、选择如下
第一次所用pytorch安装选项
3、安装后这个问题仍然没有解决

第二步本人决定不再安装稳定版本的用更新的pytorch,于是本人选择如下

在这里插入图片描述
安装完成后问题得到解决


总结

1、该问题是由CUDA版本与pytorch导致的,一般根据CUDA版本调整pytorch即可。
之前版本的pytorch与CUDA的对应关系链接如下
https://pytorch.org/get-started/previous-versions/
2、在pytorch版本不够新的时候可以选择非稳定版本的安装。

### 查找CUDA 12.3兼容的PyTorch版本 对于NVIDIA GeForce RTX 4060 Laptop GPU这类支持CUDA能力sm_89的设备,当前已有的PyTorch安装并不提供支持[^1]。为了使该GPU能够正常工作于PyTorch环境中,建议访问官方页面获取最新指导说明并选择合适的PyTorch版本。 当面对特定版本需求如CUDA 12.3时,应当确认所使用的PyTorch构建确实包含了对该版CUDA的支持。截至最近更新的信息显示,在某些情况下可能需要通过指定渠道来获得带有适当CUDA支持的PyTorch包。例如,可以通过如下命令行指令利用Conda环境管理工具安装针对CUDA 12.1优化过的PyTorch组件集合: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia ``` 然而,具体到CUDA 12.3这一较新版本,需特别留意官方文档中的发布记录以及各库之间的依赖关系,因为并非所有旧有或最新的PyTorch发行都会立即适配每一个新的CUDA次要版本。因此,强烈推荐定期查阅[PyTorch官方网站](https://pytorch.org/get-started/locally/)以获取最准确的配置指南可用选项列表[^2]。 此外,考虑到不同操作系统平台下的差异性,有时也可能涉及到额外的操作系统级软件包准备过程,比如确保Python解释器及其虚拟环境创建工具已经正确设置好,这通常可通过执行以下Linux系统的APT包管理系统命令完成初步准备工作[^4]: ```bash sudo apt update && sudo apt install python3 python3-venv ``` 值得注意的是,过往经验表明即使是最新的PyTorch版本也未必能即时覆盖所有的现有CUDA版本组合;例如曾经存在最高仅至CUDA 11.3的情况,这意味着用户必须仔细核对自己的本地CUDA版本号,并据此挑选相匹配PyTorch二进制文件[^5]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值