PromQL 分组与聚合函数 基于标签、时间聚合

本文详细介绍了Prometheus的时间序列数据聚合操作,包括sum、min、max、avg等内置聚合函数,以及如何通过without和by进行标签维度的聚合。同时,讨论了基于时间的聚合如_over_time()函数,用于平滑曲线和计算时间范围内的统计值。此外,还介绍了子查询的概念,用于计算如最大请求率等复杂指标。最后,提供了几个具体的PromQL查询示例和练习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Prometheus还提供了下列内置的聚合操作符,这些操作符作用域瞬时向量。可以将瞬时表达式返回的样本数据进行聚合,形成一个新的时间序列

聚合运算符从标签维度进行聚合,这些运算符在一个时间内对多个序列进行聚合。

聚合函数

官方文档:https://prometheus.io/docs/prometheus/latest/querying/operators/

  • sum():对样本值求和;
  • avg():对样本值求平均值这是进行指标数据分析的标准方法;
  • count():对分组内的时间序列进行数量统计;   计算序列的总数,要和sum区分开
  • stddev():对样本值求标准差,以帮助用户了解数据的波动大小(或称之为波动程度)
  • stdvar():对样本值求方差,它是求取标准差过程的中间状态;
  • min():求取样本值的最小值;
  • max():求取样本值的最大值;
  • topk():逆序返回分组内的样本值最大的前k个时间序列及其值;
  • bottomk():顺序返回分组内的样本值最小的前k个时间序列及其值;
  • quantile():分位数用于评估数据的分布状态,该函数会返回分组内指定的分位数的值,即数值落在小于等于指定的分位区间的比例;
  • count_values():对分组内的时间序列的样本值进行数量统计;

聚合表达式   group 只是按标签分组,并将样本值设为 1

使用聚合操作的语法如下:

  • PromQL中的聚合操作语法格式可采用如下两种格式之一:
    • <aggr-op>     ([parameter,]<vector exoression>)     [without|by(<label list>)]
    • <aggr-op>     [without|by(<label list>)]      ([parameter,]<vector exoression>)
  • 分组聚合:先分组、后聚合
    • without:从结果向量中删除由without子句指定的标签,未指定的那部分标签则用作分组标准;
    • by:功能与without刚好相反,它仅使用by字句中指定的标签进行聚合,结果向量中出现但未被by子句指定的标签则会被忽略;
      • 为了保留上下文信息,使用by字句时需要显示指定其结果中原本出现的job、instance等一类标签;
  • 事实上,各函数工作机制的不同之处也仅在于计算操作本身,PromQL对于它们的执行逻辑相似;

其中只有count_values, quantile, topk, bottomk支持参数(parameter)。

without用于从计算结果中移除列举的标签,而保留其它标签。by则正好相反,结果向量中只保留列出的标签,其余标签则移除。通过without和by可以按照样本的问题对数据进行聚合。

例如:

sum(http_requests_total) without (instance)

等价于

sum(http_requests_total) by (code,handler,job,method)

如果只需要计算整个应用的HTTP请求总量,可以直接使用表达式:

sum(http_requests_total)

聚合


我们知道 Prometheus 的时间序列数据是多维数据模型,我们经常就有根据各个维度进行汇总的需求。

基于标签  分组聚合


  • request_duration_seconds_count    就是一共有多少个请求
  • request_duration_seconds_sum      是总的延迟时间,就是所有请求一共花了多长时间

例如我们想知道的 demo 服务5m钟处理的请求数,那么可以所有单个的速率相加就可以,这样就可以算得5m内所有的请求数量。 

sum(rate(demo_api_request_duration_seconds_count{job="demo"}[5m]))

可以得到如下所示的结果:

但是我们可以看到绘制出来的图形没有保留任何标签维度,一般来说可能我们希望保留一些维度,例如,我们可能更希望计算每个 instance 和 path 的变化率,但并不关心单个 method 或者 status 的结果,这个时候我们可以在 sum() 聚合器中添加一个 without() 的修饰符:

sum without(method, status) (rate(demo_api_request_duration_seconds_count{job="demo"}[5m]))

上面的查询语句相当于用 by() 修饰符来保留需要的标签的取反操作:by()类似于SQL语句里面的group by,这里是根据什么去做分组聚合。

sum by(instance, path, job) (rate(demo_api_request_duration_seconds_count{job="demo"}[5m]))

 现在得到的 sum 结果是就是按照 instancepathjob 来进行分组去聚合的了:

最后同理apiserver也是一样的

sum by(verb)(rate(apiserver_request_duration_seconds_count[5m]))

这里的分组概念和 SQL 语句中的分组去聚合就非常类似了。

除了 sum() 之外,Prometheus 还支持下面的这些聚合器/聚合函数:(如果不加上by进行分组,那么计算的是整个时间序列的值,只是一个值而已,没有标签维度)

聚合函数:avg (平均值)


通过查询 metric值为 node_cpu_seconds_total 来获取当前CPU 的所有信息,直接通过此参数参数,会查到的数据是当前CPU的所有相关的收集到的数据。

此时就需要使用 irate 函数,用于计算距离向量中的实际序列的每秒顺势增长率。再根据标签筛选来查询如下:

irate(node_cpu_seconds_total{job="node"}[5m])

使用avg聚合查询到的数据后,再使用by 来区分实例,这样就能做到分实例查询各自的数据。

avg(irate(node_cpu_seconds_total{job="node_srv"}[5m])) by (instance)

上面的语句查询到的CPU数据,是包含CPU的所有数据,而我们要查询的是CPU的5分钟负载

思路就可以这样:查询出CPU的空闲值mode='idle',乘以一百得出空闲百分比后,在用100减去空闲百分比就得出CPU使用的百分比

如下:

100 - ((avg(irate(node_cpu_seconds_total{job="node_srv",mode="idle"}[5m])) by (instance)) * 100)

练习:

1.按 job 分组聚合,计算我们正在监控的所有进程的总内存使用量(process_resident_memory_bytes 指标):

sum by(job) (process_resident_memory_bytes)

 2.计算指标有多少不同的CPU模式:

count (group by(mode) (demo_cpu_usage_seconds_total))

3.计算每个 job 任务和指标名称的时间序列数量:

count by (job, __name__) ({__name__ != ""})

每个指标里面都有_name_ 

基于时间聚合(Gauge类型)


前面我们已经学习了如何使用 sum()avg() 和相关的聚合运算符从标签维度进行聚合这些运算符在一个时间内对多个序列进行聚合但是有时候我们可能想在每个序列中按时间进行聚合,例如,使尖锐的曲线更平滑,或深入了解一个序列在一段时间内的最大值。

为了基于时间来计算这些聚合,PromQL 提供了一些与标签聚合运算符类似的函数,但是在这些函数名前面附加了 _over_time()

<aggregation>_over_time()

下面的函数列表允许传入一个区间向量,它们会聚合每个时间序列的范围,并返回一个瞬时向量

  • avg_over_time(range-vector):区间向量内每个指标的平均值。
  • min_over_time(range-vector):区间向量内每个指标的最小值。
  • max_over_time(range-vector):区间向量内每个指标的最大值。
  • sum_over_time(range-vector):区间向量内每个指标的求和。
  • count_over_time(range-vector):区间向量内每个指标的样本数据个数。
  • quantile_over_time(scalar, range-vector):区间向量内每个指标的样本数据值分位数。
  • stddev_over_time(range-vector):区间向量内每个指标的总体标准差。
  • stdvar_over_time(range-vector):区间向量内每个指标的总体标准方差。

[info] 注意:即使区间向量内的值分布不均匀,它们在聚合时的权重也是相同的。

例如,我们查询 demo 实例中使用的 goroutine 的原始数量,可以使用查询语句 go_goroutines{job="demo"},这会产生一些尖锐的峰值图:

我们可以通过对图中的每一个点来计算 10 分钟内的 goroutines 数量进行平均来使图形更加平滑:他要算十分钟之内的平均值,其实就是将这些值全部加起来求平均。

 可以看到计算的平均值

avg_over_time(go_goroutines{job="demo"}[10m])

这个查询结果生成的图表看起来就平滑很多了:

比如要查询 1 小时内内存的使用率则可以用下面的查询语句:

100 * (1 - ((avg_over_time(node_memory_MemFree_bytes[1h]) + avg_over_time(node_memory_Cached_bytes[1h]) + avg_over_time(node_memory_Buffers_bytes[1h])) / avg_over_time(node_memory_MemTotal_bytes[1h])))

子查询


上面所有的 _over_time() 函数都需要一个范围向量作为输入(比如[5m]),通常情况下只能由一个区间向量选择器来产生,比如 my_metric[5m]。但是如果现在我们想使用例如 max_over_time() 函数来找出过去一天中 demo 服务的最大请求率应该怎么办呢?

请求率 rate 并不是一个我们可以直接选择时间的原始值,而是一个计算后得到的值,比如:

rate(demo_api_request_duration_seconds_count{job="demo"}[5m])

如果我们直接将表达式传入 max_over_time() 并附加一天的持续时间查询的话就会产生错误:

# ERROR!
max_over_time(
  rate(
    demo_api_request_duration_seconds_count{job="demo"}[5m]
  )[1d]
)

实际上 Prometheus 是支持子查询的,它允许我们首先以指定的步长在一段时间内执行内部查询,然后根据子查询的结果计算外部查询。子查询的表示方式类似于区间向量的持续时间,但需要冒号后添加了一个额外的步长参数:[<duration>:<resolution>]

这样我们可以重写上面的查询语句,告诉 Prometheus 在一天的范围内评估内部表达式,步长分辨率为 15s:

max_over_time(
  rate(
    demo_api_request_duration_seconds_count{job="demo"}[5m]
  )[1d:15s] # 在1天内明确地评估内部查询,步长为15秒
)

也可以省略冒号后的步长,在这种情况下,Prometheus 会使用配置的全局 evaluation_interval 参数进行评估内部表达式:

max_over_time(
  rate(
    demo_api_request_duration_seconds_count{job="demo"}[5m]
  )[1d:]
)

这样就可以得到过去一天中 demo 服务最大的 5 分钟请求率,不过冒号仍然是需要的,以明确表示运行子查询。子查询还允许添加一个偏移修饰符 offset 来对内部查询进行时间偏移,类似于瞬时和区间向量选择器。

但是也需要注意长时间计算子查询代价也是非常昂贵的,我们可以使用记录规则(后续会讲解)预先记录中间的表达式,而不是每次运行外部查询时都实时计算它。

练习:

  1. 输出过去一小时内 demo 服务的最大 95 分位数延迟值(1 分钟内平均),按 path 划分:
max_over_time(
   histogram_quantile(0.95, sum by(le, path) (
     rate(demo_api_request_duration_seconds_bucket[1m])
    )
  )[1h:]
)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值