论文笔记
文章平均质量分 83
Arch学灰
I am a dreamer on air
展开
-
Focal Loss论文阅读笔记
Focal Loss for Dense Object Detection引入问题目前目标检测的框架一般分为两种:基于候选区域的two-stage的检测框架(比如fast r-cnn系列),基于回归的one-stage的检测框架(yolo,ssd这种),two-stage的效果好,one-stage的快但是效果差一些。本文作者希望弄明白为什么one-stage的检测器准确率不高的问题,作者给出的解释原创 2017-08-15 21:10:33 · 32073 阅读 · 0 评论 -
Couple Net论文阅读笔记
CoupleNet: Coupling Global Structure with Local Parts for Object Detection背景:R-FCN在利用了FCN之后,目标检测的效果仍然十分可观并在速度上有较大提升,比faster r-cnn快2.5-20倍,R-FCN利用的是卷积产生的位敏得分feature map(一个ROI的k*k个位置对每一类均产生一个score map),基原创 2017-08-22 00:04:19 · 3970 阅读 · 0 评论 -
A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection
这篇文章的特点:利用了global context的信息利用了scene context的信息背景: 什么是global context?在我的理解就是,图的整体性的重要性,一张图上出现一个新的物体,显著性会发生明显的变化。论文中有这样解释,如果不考虑global context,在图b中也会对图a中显著性高的地方做出类似的反应,这样ground truth就不是很好。什么是scene co原创 2017-09-16 00:27:00 · 1171 阅读 · 0 评论 -
saliency detection by forward and backward cues in deep-cnn
本文主要工作:本文结合forward和backward的特征,利用弱监督的方式进行了显著性检测(这里若监督的意思是使用预训练好的分类模型,不需要再训练显著性数据即可得到saliency map,即通过反向传播的方式)在计算saliency map时,相比之前工作中的back propagation(BP)和guided back propagation(GBP)方法,进行了改进,得到partia原创 2017-09-12 00:18:25 · 772 阅读 · 0 评论 -
Predicting Human Eye Fixations via an LSTM-based Saliency Attentive Model
SAM显著性检测模型本文特点:1、相比之前做显著性检测的模型,本文最大的特点是采用了neural attentive mechanism这种机制是什么意思,给出原文的解释(自己不太明白): Machine attention [16] is a computational paradigm which aims to compute an output as a weighted sum of原创 2017-09-20 23:17:50 · 2175 阅读 · 0 评论