在一个r行c列的网格地图中有一些高度不同的石柱,一些石柱上站着一些蜥蜴,你的任务是让尽量多的蜥蜴逃
到边界外。 每行每列中相邻石柱的距离为1,蜥蜴的跳跃距离是d,即蜥蜴可以跳到平面距离不超过d的任何一个石
柱上。石柱都不稳定,每次当蜥蜴跳跃时,所离开的石柱高度减1(如果仍然落在地图内部,则到达的石柱高度不
变),如果该石柱原来高度为1,则蜥蜴离开后消失。以后其他蜥蜴不能落脚。任何时刻不能有两只蜥蜴在同一个
石柱上。

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_34564984/article/details/54015438
1066: [SCOI2007]蜥蜴
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3525 Solved: 1765
[Submit][Status][Discuss]
Description
Input
输入第一行为三个整数r,c,d,即地图的规模与最大跳跃距离。以下r行为石竹的初始状态,0表示没有石柱
,1~3表示石柱的初始高度。以下r行为蜥蜴位置,“L”表示蜥蜴,“.”表示没有蜥蜴。
Output
输出仅一行,包含一个整数,即无法逃离的蜥蜴总数的最小值。
Sample Input
00000000
02000000
00321100
02000000
00000000
........
........
..LLLL..
........
........
Sample Output
HINT
100%的数据满足:1<=r, c<=20, 1<=d<=4
Source
<a href="http://www.lydsy.com/JudgeOnline/problemset.php?search=Pku%202711%20Leapin" lizards'="" style="color: blue; text-decoration: none;">Pku 2711 Leapin' Lizards
#include<iostream> #include<algorithm> #include<cstdlib> #include<cstdio> #include<cmath> #include<cstring> #include<string> #include<climits> #include<queue> #include<stack> #include<map> #include<set> #define p(a,b) (a-1)*m+b #define q(a,b) p(a,b)+n*m #define N 50005 #define M 2000002 #define inf 1<<26 using namespace std; inline int read() { int x=0,f=1;char ch; while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } int n,m,r,s,t,ans; char mp[101][101]; int ap[101][101]; bool dis(int a,int b,int x,int y) {return (a-x)*(a-x)+(b-y)*(b-y)<=r*r;} int head[N],pos=-1,cur[N]; struct edge{int to,next,c;}e[M]; void add(int a,int b,int c) {pos++;e[pos].to=b,e[pos].c=c,e[pos].next=head[a],head[a]=pos;} void insert(int a,int b,int c){add(a,b,c);add(b,a,0);} queue<int>Q;bool vis[N];int d[N]; bool bfs() { for(int i=s;i<=t;i++)vis[i]=0,d[i]=-1; vis[s]=1,d[s]=0;Q.push(s); while(!Q.empty()) { int u=Q.front();Q.pop(); for(int i=head[u];i!=-1;i=e[i].next) { int v=e[i].to; if(vis[v]||e[i].c<=0)continue; d[v]=d[u]+1;vis[v]=1;Q.push(v); } }return vis[t]; } int dfs(int u,int a) { if(u==t||!a)return a; int flow=0,f; for(int &i=cur[u];i!=-1;i=e[i].next) { int v=e[i].to; if(d[v]==d[u]+1&&(f=dfs(v,min(e[i].c,a)))>0) { flow+=f,a-=f; e[i].c-=f,e[i^1].c+=f; if(!a)break; } }return flow; } int dinic() { int ret=0; while(bfs()) { for(int i=s;i<=t;i++)cur[i]=head[i]; ret+=dfs(s,inf); }return ret; } void init(){memset(head,-1,sizeof(head));} bool check(int x,int y) { if(n-x<r||m-y<r||x<=r||y<=r) return true; return false; } int main() { n=read(),m=read(),r=read(); s=0,t=n*m*2+1;init(); for(int i=1;i<=n;i++) scanf("%s",mp[i]+1); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) ap[i][j]=mp[i][j]-'0'; for(int i=1;i<=n;i++) scanf("%s",mp[i]+1); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) { if(mp[i][j]=='L') { insert(s,p(i,j),1); ans++; } if(check(i,j))insert(q(i,j),t,inf); if(ap[i][j])insert(p(i,j),q(i,j),ap[i][j]); for(int x=1;x<=n;x++) for(int y=1;y<=m;y++) { if(x==i&&y==j)continue; if(dis(i,j,x,y)) insert(q(i,j),p(x,y),inf); } }printf("%d\n",ans-dinic()); }