LeetCode解题心得——填充每个节点的下一个右侧节点指针(python)

本文分享了解决LeetCode上填充每个节点的下一个右侧节点指针问题的心得,提供了两种方法:BFS和常数空间复杂度的解决方案,详细解释了思路和时间复杂度。
摘要由CSDN通过智能技术生成

题目

给定一个完美二叉树,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:

struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL。

初始状态下,所有 next 指针都被设置为 NULL。

示例:

在这里插入图片描述
提示:

你只能使用常量级额外空间。
使用递归解题也符合要求,本题中递归程序占用的栈空间不算做额外的空间复杂度。

思路

1.BFS

时间复杂度O(n),空间复杂度O(n)

"""
# Definition for a Node.
class Node:
    def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
        self.val = val
        self.left = left
        self.right = right
        self.next = next
"""

class Solution:
    def connect(self, root: 'Node') -> 'Node':
        if not root: return
        queue = [root]
        while queue:
            size = len(queue)
            for i in range(size):
                cur = queue.pop(0)
                if i < size-1:
                    cur.next = queue[0]
                if cur.left: queue.append(cur.left)
                if cur.right: queue.append(cur.right)
        return root

2.https://leetcode-cn.com/problems/populating-next-right-pointers-in-each-node/solution/dong-hua-yan-shi-san-chong-shi-xian-116-tian-chong/

时间复杂度O(n),空间复杂度O(1)

"""
# Definition for a Node.
class Node:
    def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None):
        self.val = val
        self.left = left
        self.right = right
        self.next = next
"""

class Solution:
    def connect(self, root: 'Node') -> 'Node':
        if not root: return
        ROOT = root
        while root.left:
            tmp = root
            while tmp:
                tmp.left.next = tmp.right
                if tmp.next:
                    tmp.right.next = tmp.next.left
                tmp = tmp.next
            root = root.left
        return ROOT
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值