前言
关于阅读《Variational Quantum State Eigensolver》(M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles. “Variational Quantum State Eigensolver.” arXiv preprint arXiv:2004.01372 (2020).)的一些理解与推导
一、文章简介
1.文章主要内容
主要考虑的是矩阵为密度算子的情形。通过变分量子态特征提取器(Variational Quantum State Eigensolver,VQSE)来学习量子态𝜌的最大特征值和门序列V来制备相应的特征向量。
2.文章主要方法
变分量子态特征求解器(VQSE)通过在对角化和优化之间建议来定义代价函数𝐶(𝜃)=𝑇𝑟[𝐻𝑉(𝜃)𝜌𝑉^† (𝜃)]=𝑇𝑟(𝐻𝜌 ̃)来计算预测值和实际值之间的差距,然后不断优化参数𝜃,使代价函数𝐶(𝜃)最小化。从而使估计的特征值(特征向量)与实际特征值(特征向量)的误差随着优化的次数而逐渐减小。
二、VQSE算法中采用的代价函数
1.代价函数
C ( θ ) ≡ ⟨ H ⟩ = T r [ H V ( θ ) ρ V † ( θ ) ] C(\theta) \equiv \left\langle H \right\rangle = Tr\left\lbrack HV(\theta)\rho V^{\dagger}(\theta) \right\rbrack C(θ)≡⟨H⟩=Tr[HV(θ)ρV†(θ)]
其中, H H H是一个 n n n 量子比特的哈密顿量,且在标准基下是一个对角阵,其特征能量和相应的特征向量分别依次为 { E k } \left\{ E_{k} \right\} {Ek}和 { e k } \left\{e_{k} \right\} {ek}(其中 e k = e k 1 ⋯ e k n e_{k} = e_{k}^{1}\cdots e_{k}^{n} ek=ek1⋯ekn, 𝑘 = 1 , ⋯ , 2 𝑛 𝑘=1,⋯,2^𝑛 k=1,⋯,2n)。此外,假设本征能量是非负的,并且按照递增顺序排列,即 E k ≤ E k + 1 E_{k} \leq E_{k + 1} Ek≤Ek+1. 𝑉 ( θ ) 𝑉(\theta) V(θ)是一个参数化门序列(酉矩阵,可以通过 𝑉 ( θ ) 𝑉(\theta) V(θ) 生成 ρ \rho ρ的特征向量),令 ρ ∼ = V ( θ ) ρ V † ( θ ) \overset{\sim}{\rho} = V(\theta)\rho V^{\dagger}(\theta) ρ∼=V(θ)ρV†(θ),则
C ( θ ) = ∑ k = 1 2 n E k p k = E ⋅ P , C(\theta) = {\sum_{k = 1}^{2^{n}}{E_{k}p_{k} = E \cdot P,~}} C(θ)=∑k=12nEkpk=E⋅P, , p k = ⟨ e k | ρ ∼ | e k ⟩ p_{k} = \left\langle e_{k} \middle| \overset{\sim}{\rho} \middle| e_{k} \right\rangle pk=⟨ek ρ∼ ek⟩
其中, E = ( E 1 , E 2 , ⋯ ) E = \left( E_{1},E_{2},\cdots \right) E=(E1,E2,⋯)以及 p = ( p 1 , p 2 , ⋯ ) p = \left( p_{1},p_{2},\cdots \right) p=(p1,p2,⋯).
标记令
λ
=
(
λ
1
,
λ
2
,
⋯
)
\mathbf{\lambda} = \left( \lambda_{1},\lambda_{2},\cdots \right)
λ=(λ1,λ2,⋯)为
ρ
\rho
ρ的特征值,且
ρ
\rho
ρ和
ρ
∼
\overset{\sim}{\rho}
ρ∼拥有相同的特征值(下证)。由于厄米算子的特征值使其对角元素
λ
≻
𝑝
\lambda≻𝑝
λ≻p且有序向量的点积是一个Schur凹函数,则有
C
(
θ
)
=
E
⋅
p
≥
E
⋅
λ
=
∑
k
E
k
λ
k
\mathbf{C}\left( \mathbf{\theta} \right) = \mathbf{E} \cdot \mathbf{p} \geq \mathbf{E} \cdot \mathbf{\lambda} = {\sum_{\mathbf{k}}{\mathbf{E}_{\mathbf{k}}\mathbf{\lambda}_{\mathbf{k}}}}
C(θ)=E⋅p≥E⋅λ=∑kEkλk
因此,通过
𝑉
(
θ
)
𝑉(\theta)
V(θ)将
ρ
\rho
ρ的特征基映射到H的特征基可使得
𝐶
(
θ
)
𝐶(\theta)
C(θ)最小化。由于后者是标准基,因此该过程相当于对角化
ρ
\rho
ρ。于是最小化
𝐶
(
θ
)
𝐶(\theta)
C(θ)和对角化
ρ
\rho
ρ密切相关。
相关内容理解与推导
2.代价函数的意义
记
{
∣
λ
∼
i
⟩
}
i
=
1
m
\{ | {\overset{\sim}{\lambda}}_{i}\rangle \}_{i = 1}^{m}
{∣λ∼i⟩}i=1m和其相关联的
λ
∼
i
{\overset{\sim}{\lambda}}_{i}
λ∼i分别为估计的特征向量和特征值。定义特征值和特征向量的误差为:
ε
λ
≡
∑
i
=
1
m
(
λ
i
−
λ
∼
i
)
2
\varepsilon_{\lambda} \equiv {\sum_{i = 1}^{m}\left( {\lambda_{i} - {\overset{\sim}{\lambda}}_{i}} \right)^{2}}
ελ≡∑i=1m(λi−λ∼i)2
ε
v
≡
∑
i
=
1
m
⟨
δ
i
|
δ
i
⟩
\varepsilon_{v} \equiv {\sum_{i = 1}^{m}\left\langle \delta_{i} \middle| \delta_{i} \right\rangle}
εv≡∑i=1m⟨δi∣δi⟩
其中,
∣
δ
i
⟩
=
ρ
∣
λ
∼
i
⟩
−
λ
∼
i
∣
λ
∼
i
⟩
\left| \left. \delta_{i} \right\rangle \right. = \rho\left| \left. {\overset{\sim}{\lambda}}_{i} \right\rangle \right. - {\overset{\sim}{\lambda}}_{i}\left| \left. {\overset{\sim}{\lambda}}_{i} \right\rangle \right.
∣δi⟩=ρ
λ∼i⟩−λ∼i
λ∼i⟩.这里
⟨
δ
i
|
δ
i
⟩
\left\langle \delta_{i} \middle| \delta_{i} \right\rangle
⟨δi∣δi⟩量化了
ρ
∣
λ
∼
i
⟩
\rho\left| \left. {\overset{\sim}{\lambda}}_{i} \right\rangle \right.
ρ
λ∼i⟩正交于
∣
λ
∼
i
⟩
\left| \left. {\overset{\sim}{\lambda}}_{i} \right\rangle \right.
λ∼i⟩的分量。
三.VQSE的理论基础及算法介绍
Input
一个
n
n
n量子比特的量子态
ρ
\rho
ρ,其中
ρ
=
∑
k
λ
k
∣
λ
k
⟩
⟨
λ
k
∣
\mathbf{\rho} = {\sum_{{k}}{{\lambda}_{{k}}| \mathbf{\lambda}_{{k}}\rangle \langle \mathbf{\lambda}_{{k}} |}}
ρ=∑kλk∣λk⟩⟨λk∣,且满足特征值降序排列,即对任意
𝑘
=
1
,
⋯
,
𝑟
𝑎
𝑛
𝑘
(
ρ
)
𝑘=1,⋯,𝑟𝑎𝑛𝑘(\rho)
k=1,⋯,rank(ρ),满足
λ
k
≥
λ
k
+
1
{\lambda}_{{k}} \geq {\lambda}_{{k} + 1}
λk≥λk+1且对于
𝑘
≥
𝑟
𝑎
𝑛
𝑘
(
ρ
)
𝑘 \geq𝑟𝑎𝑛𝑘(\rho)
k≥rank(ρ),满足 Font metrics not found for font: .;一个整数
m
m
m;一个初始化参数化酉矩阵
𝑉
(
θ
)
𝑉(\theta)
V(θ)。
Output
估计量子态
ρ
\rho
ρ 的前
m
m
m大特征值,其中 m≪2n,并返回可以从标准基出发生成量子态𝜌 的特征向量的门序列 V(θ).
VQSE算法电路图
图来源于文献 M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles. “Variational Quantum State Eigensolver.” arXiv preprint arXiv:2004.01372 (2020)
VQSE 通过一个混合量子-经典优化循环来训练拟设𝑉(𝜃)的参数𝜃,这一循环中使用一个量子计算机来评估 VQSE 代价函数
(
t
,
θ
)
≡
⟨
H
(
t
)
⟩
=
T
r
[
H
(
t
)
ρ
∼
]
\left( {t,\theta} \right) \equiv \left\langle {H(t)} \right\rangle = Tr\lbrack H(t)\overset{\sim}{\rho} \rbrack
(t,θ)≡⟨H(t)⟩=Tr[H(t)ρ∼]
𝐶(𝑡,𝜃)通过将𝑉(𝜃)作用于𝜌并在H(t)上测量得到。循环体中每次量子计算机通过给定的𝜃计算代价函数𝐶(𝑡,𝜃)的值,再由经典计算机确定新𝜃值进入下一循环。最终的全局最小值对应t=1,即
θ
o
p
t
=
arg
min
θ
C
(
1
,
θ
)
\theta_{opt} = {\arg{\min\limits_{\theta}{C(1,\theta)}}}
θopt=argθminC(1,θ)
VQSE 的下一步是输出特征值。先作用门序列 𝑉 ( θ 𝑜 𝑝 𝑡 ) 𝑉(\theta_{𝑜𝑝𝑡} ) V(θopt),并在标准基 { ∣ z i ⟩ } \left\{ \left| \left. z_{i} \right\rangle \right. \right\} {∣zi⟩}下进行测量,从而得到𝜌的特征值。令 Pr ( z i ) = ⟨ z i ∣ ρ ∼ ∣ z i ⟩ = λ ∼ i {\Pr( z_{i} )} = \langle z_{i} | \overset{\sim}{\rho} | z_{i} \rangle = {\overset{\sim}{\lambda}}_{i} Pr(zi)=⟨zi∣ρ∼∣zi⟩=λ∼i为得到 𝑧 𝑖 𝑧_𝑖 zi的概率,则将前 m m m大概率作为𝜌的前m大特征值。
VQSE的最后一步是输出特征向量。给定二进制串
𝑧
𝑖
∈
𝑍
𝑧_𝑖\in𝑍
zi∈Z,则可以通过先作用再作用
X
z
1
i
⊗
X
z
2
i
⊗
⋯
⨂
X
z
n
i
X^{z_{1}^{i}} \otimes X^{z_{2}^{i}} \otimes \cdots\bigotimes X^{z_{n}^{i}}
Xz1i⊗Xz2i⊗⋯⨂Xzni再作用
V
(
θ
o
p
t
)
+
V\left( \theta_{opt} \right)^{+}
V(θopt)+在
∣
0
⟩
⊗
n
\left| \left. 0 \right\rangle \right.^{\otimes n}
∣0⟩⊗n上来得到。特征向量存储在量子计算机上,我们可以通过采样来提取该信息。
∣
λ
∼
i
⟩
=
V
(
θ
o
p
t
)
+
∣
z
i
⟩
| {\overset{\sim}{\lambda}}_{i}\rangle = V\left( \theta_{opt} \right)^{+}\left| \left. z_{i} \right\rangle \right.
∣λ∼i⟩=V(θopt)+∣zi⟩
∣
z
i
⟩
=
X
z
1
i
⊗
X
z
2
i
⊗
⋯
⨂
X
z
n
i
∣
0
⟩
⊗
n
\left| \left. z_{i} \right\rangle \right. = X^{z_{1}^{i}} \otimes X^{z_{2}^{i}} \otimes \cdots\bigotimes X^{z_{n}^{i}}\left| \left. 0 \right\rangle \right.^{\otimes n}
∣zi⟩=Xz1i⊗Xz2i⊗⋯⨂Xzni∣0⟩⊗n
四. 文章中的数值实验结果
文章比较了用全局代价函数
𝐶
𝐺
(
θ
)
𝐶_𝐺 (\theta)
CG(θ),局部最优代价函数
𝐶
L
(
θ
)
𝐶_L (\theta)
CL(θ),以及适定性代价函数的结果。并且展示了用VQSE来估计
n
=
4
,
6
,
8
n=4,6,8
n=4,6,8三种量子态的第6大特征值的三种代价函数比较结果图。
图来源于文献 M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles. “Variational Quantum State Eigensolver.” arXiv preprint arXiv:2004.01372 (2020)
绝对误差为 1 ϵ λ \frac{1}{\epsilon_{\lambda}} ϵλ1 。当n=4时,由图中可以得到在 1 ϵ λ \frac{1}{\epsilon_{\lambda}} ϵλ1 小于 1 0 8 10^8 108时,局部和适定性哈密顿性能相同,但当 1 ϵ λ \frac{1}{\epsilon_{\lambda}} ϵλ1大于 1 0 8 10^8 108时,局部测量最好。当n=6和8时,随着 1 ϵ λ \frac{1}{\epsilon_{\lambda}} ϵλ1 的增大,适应性哈密顿量表现最优。
由于现阶段量子计算机是有噪音的,所有制备态的电路得到的都是混合态𝜌。假定𝜌的最大特征值对应特征向量
∣
ψ
⟩
|\psi\rangle
∣ψ⟩,则VQSE可以用于再纯化𝜌和
∣
ψ
⟩
|\psi\rangle
∣ψ⟩。
这是因为当𝑉(𝜃)的电路深度很浅时,可以通过比较𝜌和
∣
ψ
⟩
|\psi\rangle
∣ψ⟩的保真度来得到噪音的态𝜎和
∣
ψ
⟩
|\psi\rangle
∣ψ⟩的更高保真度的估计,于是可以通过态制备电路为VQSE特征向量制备电路来降低误差。
总结
不正确的地方欢迎大家指出!!!