学习笔记《Variational Quantum State Eigensolver》

文章介绍了VQSE算法,一种用于学习量子态最大特征值和门序列的方法。通过变分法定义代价函数,不断优化参数以最小化误差。详细阐述了代价函数的意义,包括估计特征值和特征向量的误差。实验结果对比了全局、局部和适定性代价函数在不同量子比特数下的性能,显示了适应性哈密顿量在高精度要求时的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

关于阅读《Variational Quantum State Eigensolver》(M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles. “Variational Quantum State Eigensolver.” arXiv preprint arXiv:2004.01372 (2020).)的一些理解与推导


一、文章简介

1.文章主要内容

主要考虑的是矩阵为密度算子的情形。通过变分量子态特征提取器(Variational Quantum State Eigensolver,VQSE)来学习量子态𝜌的最大特征值和门序列V来制备相应的特征向量。

2.文章主要方法

变分量子态特征求解器(VQSE)通过在对角化和优化之间建议来定义代价函数𝐶(𝜃)=𝑇𝑟[𝐻𝑉(𝜃)𝜌𝑉^† (𝜃)]=𝑇𝑟(𝐻𝜌 ̃)来计算预测值和实际值之间的差距,然后不断优化参数𝜃,使代价函数𝐶(𝜃)最小化。从而使估计的特征值(特征向量)与实际特征值(特征向量)的误差随着优化的次数而逐渐减小。

二、VQSE算法中采用的代价函数

1.代价函数

C ( θ ) ≡ ⟨ H ⟩ = T r [ H V ( θ ) ρ V † ( θ ) ] C(\theta) \equiv \left\langle H \right\rangle = Tr\left\lbrack HV(\theta)\rho V^{\dagger}(\theta) \right\rbrack C(θ)H=Tr[HV(θ)ρV(θ)]

其中, H H H是一个 n n n 量子比特的哈密顿量,且在标准基下是一个对角阵,其特征能量和相应的特征向量分别依次为 { E k } \left\{ E_{k} \right\} {Ek} { e k } \left\{e_{k} \right\} {ek}(其中 e k = e k 1 ⋯ e k n e_{k} = e_{k}^{1}\cdots e_{k}^{n} ek=ek1ekn 𝑘 = 1 , ⋯ , 2 𝑛 𝑘=1,⋯,2^𝑛 k=1,,2n)。此外,假设本征能量是非负的,并且按照递增顺序排列,即 E k ≤ E k + 1 E_{k} \leq E_{k + 1} EkEk+1. 𝑉 ( θ ) 𝑉(\theta) V(θ)是一个参数化门序列(酉矩阵,可以通过 𝑉 ( θ ) 𝑉(\theta) V(θ) 生成 ρ \rho ρ的特征向量),令 ρ ∼ = V ( θ ) ρ V † ( θ ) \overset{\sim}{\rho} = V(\theta)\rho V^{\dagger}(\theta) ρ=V(θ)ρV(θ),则

C ( θ ) = ∑ k = 1 2 n E k p k = E ⋅ P ,   C(\theta) = {\sum_{k = 1}^{2^{n}}{E_{k}p_{k} = E \cdot P,~}} C(θ)=k=12nEkpk=EP, , p k = ⟨ e k | ρ ∼ | e k ⟩ p_{k} = \left\langle e_{k} \middle| \overset{\sim}{\rho} \middle| e_{k} \right\rangle pk=ek ρ ek

其中, E = ( E 1 , E 2 , ⋯   ) E = \left( E_{1},E_{2},\cdots \right) E=(E1,E2,)以及 p = ( p 1 , p 2 , ⋯   ) p = \left( p_{1},p_{2},\cdots \right) p=(p1,p2,).

标记令 λ = ( λ 1 , λ 2 , ⋯   ) \mathbf{\lambda} = \left( \lambda_{1},\lambda_{2},\cdots \right) λ=(λ1,λ2,) ρ \rho ρ的特征值,且 ρ \rho ρ ρ ∼ \overset{\sim}{\rho} ρ拥有相同的特征值(下证)。由于厄米算子的特征值使其对角元素 λ ≻ 𝑝 \lambda≻𝑝 λp且有序向量的点积是一个Schur凹函数,则有
C ( θ ) = E ⋅ p ≥ E ⋅ λ = ∑ k E k λ k \mathbf{C}\left( \mathbf{\theta} \right) = \mathbf{E} \cdot \mathbf{p} \geq \mathbf{E} \cdot \mathbf{\lambda} = {\sum_{\mathbf{k}}{\mathbf{E}_{\mathbf{k}}\mathbf{\lambda}_{\mathbf{k}}}} C(θ)=EpEλ=kEkλk
因此,通过 𝑉 ( θ ) 𝑉(\theta) V(θ) ρ \rho ρ的特征基映射到H的特征基可使得 𝐶 ( θ ) 𝐶(\theta) C(θ)最小化。由于后者是标准基,因此该过程相当于对角化 ρ \rho ρ。于是最小化 𝐶 ( θ ) 𝐶(\theta) C(θ)和对角化 ρ \rho ρ密切相关。

相关内容理解与推导

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.代价函数的意义

{ ∣ λ ∼ i ⟩ } i = 1 m \{ | {\overset{\sim}{\lambda}}_{i}\rangle \}_{i = 1}^{m} {λi}i=1m和其相关联的 λ ∼ i {\overset{\sim}{\lambda}}_{i} λi分别为估计的特征向量和特征值。定义特征值和特征向量的误差为:
ε λ ≡ ∑ i = 1 m ( λ i − λ ∼ i ) 2 \varepsilon_{\lambda} \equiv {\sum_{i = 1}^{m}\left( {\lambda_{i} - {\overset{\sim}{\lambda}}_{i}} \right)^{2}} ελi=1m(λiλi)2
ε v ≡ ∑ i = 1 m ⟨ δ i | δ i ⟩ \varepsilon_{v} \equiv {\sum_{i = 1}^{m}\left\langle \delta_{i} \middle| \delta_{i} \right\rangle} εvi=1mδiδi
其中, ∣ δ i ⟩ = ρ ∣ λ ∼ i ⟩ − λ ∼ i ∣ λ ∼ i ⟩ \left| \left. \delta_{i} \right\rangle \right. = \rho\left| \left. {\overset{\sim}{\lambda}}_{i} \right\rangle \right. - {\overset{\sim}{\lambda}}_{i}\left| \left. {\overset{\sim}{\lambda}}_{i} \right\rangle \right. δi=ρ λiλi λi.这里 ⟨ δ i | δ i ⟩ \left\langle \delta_{i} \middle| \delta_{i} \right\rangle δiδi量化了 ρ ∣ λ ∼ i ⟩ \rho\left| \left. {\overset{\sim}{\lambda}}_{i} \right\rangle \right. ρ λi正交于 ∣ λ ∼ i ⟩ \left| \left. {\overset{\sim}{\lambda}}_{i} \right\rangle \right. λi的分量。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三.VQSE的理论基础及算法介绍

Input
一个 n n n量子比特的量子态 ρ \rho ρ,其中 ρ = ∑ k λ k ∣ λ k ⟩ ⟨ λ k ∣ \mathbf{\rho} = {\sum_{{k}}{{\lambda}_{{k}}| \mathbf{\lambda}_{{k}}\rangle \langle \mathbf{\lambda}_{{k}} |}} ρ=kλkλkλk,且满足特征值降序排列,即对任意 𝑘 = 1 , ⋯ , 𝑟 𝑎 𝑛 𝑘 ( ρ ) 𝑘=1,⋯,𝑟𝑎𝑛𝑘(\rho) k=1,,rank(ρ),满足 λ k ≥ λ k + 1 {\lambda}_{{k}} \geq {\lambda}_{{k} + 1} λkλk+1且对于 𝑘 ≥ 𝑟 𝑎 𝑛 𝑘 ( ρ ) 𝑘 \geq𝑟𝑎𝑛𝑘(\rho) krank(ρ),满足 Font metrics not found for font: .;一个整数 m m m;一个初始化参数化酉矩阵 𝑉 ( θ ) 𝑉(\theta) V(θ)

Output
估计量子态 ρ \rho ρ 的前 m m m大特征值,其中 m≪2n,并返回可以从标准基出发生成量子态𝜌 的特征向量的门序列 V(θ).


VQSE算法电路图
VQSE算法电路图
图来源于文献 M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles. “Variational Quantum State Eigensolver.” arXiv preprint arXiv:2004.01372 (2020)
VQSE 通过一个混合量子-经典优化循环来训练拟设𝑉(𝜃)的参数𝜃,这一循环中使用一个量子计算机来评估 VQSE 代价函数
( t , θ ) ≡ ⟨ H ( t ) ⟩ = T r [ H ( t ) ρ ∼ ] \left( {t,\theta} \right) \equiv \left\langle {H(t)} \right\rangle = Tr\lbrack H(t)\overset{\sim}{\rho} \rbrack (t,θ)H(t)=Tr[H(t)ρ]

𝐶(𝑡,𝜃)通过将𝑉(𝜃)作用于𝜌并在H(t)上测量得到。循环体中每次量子计算机通过给定的𝜃计算代价函数𝐶(𝑡,𝜃)的值,再由经典计算机确定新𝜃值进入下一循环。最终的全局最小值对应t=1,即
θ o p t = arg ⁡ min ⁡ θ C ( 1 , θ ) \theta_{opt} = {\arg{\min\limits_{\theta}{C(1,\theta)}}} θopt=argθminC(1,θ)

VQSE 的下一步是输出特征值。先作用门序列 𝑉 ( θ 𝑜 𝑝 𝑡 ) 𝑉(\theta_{𝑜𝑝𝑡} ) V(θopt),并在标准基 { ∣ z i ⟩ } \left\{ \left| \left. z_{i} \right\rangle \right. \right\} {zi}下进行测量,从而得到𝜌的特征值。令 Pr ⁡ ( z i ) = ⟨ z i ∣ ρ ∼ ∣ z i ⟩ = λ ∼ i {\Pr( z_{i} )} = \langle z_{i} | \overset{\sim}{\rho} | z_{i} \rangle = {\overset{\sim}{\lambda}}_{i} Pr(zi)=ziρzi=λi为得到 𝑧 𝑖 𝑧_𝑖 zi的概率,则将前 m m m大概率作为𝜌的前m大特征值。

VQSE的最后一步是输出特征向量。给定二进制串 𝑧 𝑖 ∈ 𝑍 𝑧_𝑖\in𝑍 ziZ,则可以通过先作用再作用 X z 1 i ⊗ X z 2 i ⊗ ⋯ ⨂ X z n i X^{z_{1}^{i}} \otimes X^{z_{2}^{i}} \otimes \cdots\bigotimes X^{z_{n}^{i}} Xz1iXz2iXzni再作用 V ( θ o p t ) + V\left( \theta_{opt} \right)^{+} V(θopt)+ ∣ 0 ⟩ ⊗ n \left| \left. 0 \right\rangle \right.^{\otimes n} 0n上来得到。特征向量存储在量子计算机上,我们可以通过采样来提取该信息。
∣ λ ∼ i ⟩ = V ( θ o p t ) + ∣ z i ⟩ | {\overset{\sim}{\lambda}}_{i}\rangle = V\left( \theta_{opt} \right)^{+}\left| \left. z_{i} \right\rangle \right. λi=V(θopt)+zi
∣ z i ⟩ = X z 1 i ⊗ X z 2 i ⊗ ⋯ ⨂ X z n i ∣ 0 ⟩ ⊗ n \left| \left. z_{i} \right\rangle \right. = X^{z_{1}^{i}} \otimes X^{z_{2}^{i}} \otimes \cdots\bigotimes X^{z_{n}^{i}}\left| \left. 0 \right\rangle \right.^{\otimes n} zi=Xz1iXz2iXzni0n

四. 文章中的数值实验结果

文章比较了用全局代价函数 𝐶 𝐺 ( θ ) 𝐶_𝐺 (\theta) CG(θ),局部最优代价函数 𝐶 L ( θ ) 𝐶_L (\theta) CL(θ),以及适定性代价函数的结果。并且展示了用VQSE来估计 n = 4 , 6 , 8 n=4,6,8 n=4,6,8三种量子态的第6大特征值的三种代价函数比较结果图。
在这里插入图片描述
图来源于文献 M. Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles. “Variational Quantum State Eigensolver.” arXiv preprint arXiv:2004.01372 (2020)

绝对误差为 1 ϵ λ \frac{1}{\epsilon_{\lambda}} ϵλ1 。当n=4时,由图中可以得到在 1 ϵ λ \frac{1}{\epsilon_{\lambda}} ϵλ1 小于 1 0 8 10^8 108时,局部和适定性哈密顿性能相同,但当 1 ϵ λ \frac{1}{\epsilon_{\lambda}} ϵλ1大于 1 0 8 10^8 108时,局部测量最好。当n=6和8时,随着 1 ϵ λ \frac{1}{\epsilon_{\lambda}} ϵλ1 的增大,适应性哈密顿量表现最优。

由于现阶段量子计算机是有噪音的,所有制备态的电路得到的都是混合态𝜌。假定𝜌的最大特征值对应特征向量 ∣ ψ ⟩ |\psi\rangle ψ,则VQSE可以用于再纯化𝜌和 ∣ ψ ⟩ |\psi\rangle ψ
这是因为当𝑉(𝜃)的电路深度很浅时,可以通过比较𝜌和 ∣ ψ ⟩ |\psi\rangle ψ的保真度来得到噪音的态𝜎和 ∣ ψ ⟩ |\psi\rangle ψ的更高保真度的估计,于是可以通过态制备电路为VQSE特征向量制备电路来降低误差。


总结

不正确的地方欢迎大家指出!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值