量子基本原理


前言

微观世界中的粒子具有宏观世界中无法解释的诸多特性,这些特性主要表现在量子的状态属性上。这里将简要阐述Heisenberger测不准原理、量子不可克隆原理、量子态区分这三种量子力学基本原理。


一、Heisenberger测不准原理

测不准原理又称为“不确定关系”,由德国物理学家海森堡(Heisenberger)于1927年提出。该原理阐述了,尽管因为微观粒子的波粒二象性,其坐标和动量无法同时取得确定性的值,但两者之间满足一个不确定的关系。换句话说,Heisenberger测不准原理说明了微观粒子的这两类不相容可观测态的属性是互补的,即,对一种属性的精确测量是以其互补属性的不确定性为代价,而存在一定的关系。
测不准原理的具体描述如下:假设存在一个量子系统,由大量相同状态 ∣ φ ⟩ \left| \left. \varphi \right\rangle \right. φ组成,A和B是其中两个任意的可观测量,且二者不满足对易条件,即
[ A , B ] = A B − B A ≠ 0 \left\lbrack {A,B} \right\rbrack = AB - BA \neq 0 [A,B]=ABBA=0
上式说明,A和B不能同时有确定的值。则,测量结果为A的标准差∆A与测量结果为B的标准偏差∆B满足:
Δ A ⋅ Δ B ≥ ∣ ⟨ φ | [ A , B ] | φ ⟩ ∣ 2 \mathrm{\Delta}A \cdot \mathrm{\Delta}B \geq \frac{\left| \left\langle \varphi \middle| \left. \left\lbrack {A,B} \right\rbrack \middle| \varphi \right. \right\rangle \right|}{2} ΔAΔB2φ[A,B]φ
Heisenberger测不准原理描述了两个不可同时精确测量的变量之间的相互影响,在量子通信中起着至关重要的作用,也是量子密码学中进行安全性分析的重要理论基础。

二、量子不可克隆原理

量子不可克隆原理最早由Wootters和Zurek在1982发表的论文(Wooters W K, Zurek W H, Dieks. Single qubit no-cloning[J]. Natural, 1982, 299: 802.)中提出,他们表明,在量子力学中,任何物理方式都无法精确复制一个未知的量子态,即,获得的复制的量子态和初始量子态完全一样。该原理可以根据量子态叠加原理反证。正是量子态的这种不可克隆性,保证了未知量子态不能被精确地复制,从而使得以量子态为信息载体的量子密码达到无条件安全,并在量子信息学的研究中起着重要的基石作用。

三、量子态区分

在量子信息与量子计算中,信息的载体是量子系统。为了获取量子系统的有效信息,需要通过量子测量对收到的量子态进行区分。如果这些量子态已知是正交的,那么很容易通过测量完成量子态区分。一般情况下,物理实现的测量是POVM,即采用不同的测量算子对正交量子态进行测量区分。然而,当这些量子态非正交时,是无法完美区分的,这也就使得人们需要设计不同的策略以尽可能大的概率来区分量子态。因此,量子态区分(Quantum State Discrimination, 简记为QSD)也是量子信息的一个基本问题。
前,主要有两种重要的非正交量子态区分的方法。一种叫做确定性区分(Unambiguous Discrimination),即,这种区分不一定保证每次都能给出结果,但是只要给出了结果,就可以确信这个结果是正确的。另一种是最小错误区分(Minimum-error Discrimination),即,每次的测量都能给出区分结果,虽然它不能保证每次给出的结果一定是正确的,但是它的结果的好坏可以用最小错误P_E来衡量。接下来,我们将对这两种区分进行简要的描述。

3.1. 确定性区分

在1998年,Chefles和Barnett (Chefles A, Barnett S M. Optimum unambiguous discrimination between linearly independent symmetric states[J]. Physical Letters A, 1998, 250: 223-229) 就对量子态确定性区分做出重要结论,即,只有线性无关的量子态才可以被确定性区分。下面,我们就以两个纯态的确定性区分为例进行描述。给定一个量子态 ∣ φ ⟩ |\varphi\rangle φ,我们只知道它可能属于 ∣ p ⟩ |p\rangle p ∣ q ⟩ |q\rangle q中的一种,那么如何在不出错的情况下给出量子态的确定性信息呢?对于这一问题,因为不允许错误判断,我们在选择测量算子时,就必须包含一个不确定的测量算子。当确定性测量算子 Π i \Pi_{i} Πi有测量结果时,表明待测态必定处于 ρ i \rho_{i} ρi态。当不确定性测量算子 Π ? \Pi_{?} Π?有测量结果时,表明这次测量没有办法区分待测态,放弃测量结果,进行下一次测量。
则,以区分 ∣ p ⟩ |p\rangle p ∣ q ⟩ |q\rangle q为例,在确定性区分中,设计三个测量算子 Π i \Pi_{i} Πi(i=1,2,3),满足以下条件:
Π 1 + Π 2 + Π 3 = I \Pi_{1} + \Pi_{2} + \Pi_{3} = I Π1+Π2+Π3=I
其中,测量结果为 Π 1 \Pi_{1} Π1(或 Π 2 \Pi_{2} Π2)时,表明所测量子态一定处于 ∣ p ⟩ |p\rangle p ∣ q ⟩ |q\rangle q Π 3 \Pi_{3} Π3对应的就是不确定性测量算子 Π ? \Pi_{?} Π?,当结果为 Π 3 \Pi_{3} Π3时,表明本次测量无法给出结果。

3. 2. 最小错误区分

该方法的基本思路是:选择一组最佳的测量算子,使得测量者犯错误的概率最小。不过,Helstrom在文献中仅讨论了区分两个量子态的情况。对于一般情况的量子态最小错误区分,Haapasalo等人在他们的研究工作中给出了这个概率的紧致下界( Haapasalo E, Sedlak M, Ziman M. Boundariness and minimum-error discrimination[J]. Physical Review A, 2014, 89(6): 062303.)。
假设Alice制备了一簇量子态 ρ i \rho_{i} ρi(i=1,2,⋯,n)中的一个,并将它发送给Bob,同时告知Bob可能出现的所有状态 ρ i \rho_{i} ρi及相应的先验概率 η i {η_i} ηi(i=1,2,⋯,n),其中 ∑ i = 1 n η i = 1 {\sum\limits_{i = 1}^{n}\eta_{i}} = 1 i=1nηi=1。此时,Bob构造n个最优测量算子 Π i \Pi_{i} Πi(i=1,2,3)对量子系统进行测量。因为在最小错误区分中,每次测量必须给出判定的结果,所以这些测量算子满足 ∑ i = 1 n Π i = I {\sum\limits_{i = 1}^{n}\Pi_{i}} = I i=1nΠi=I Π i > 0 \Pi_{i}>0 Πi>0。Bob测量后对应了n个测量结果,如果Alice给Bob发送了 ρ i \rho_{i} ρi,但Bob测量后得到的是k,则认为他接受的状态是 ρ k \rho_{k} ρk,概率是 P ( k | i ) = T r ( Π k ρ i ) P\left( k \middle| i \right) = Tr\left( \Pi_{k}\rho_{i} \right) P(ki)=Tr(Πkρi)。因此,多次测量后,Bob得到的区分的错误平均概率为:
P E = ∑ i = 1 n η i ( ∑ j ≠ i T r ( Π j ρ i ) ) P_{E} = {\sum\limits_{i = 1}^{n}{\eta_{i}\left( {\sum\limits_{j \neq i}{Tr\left( \Pi_{j}\rho_{i} \right)}} \right)}} PE=i=1nηi(j=iTr(Πjρi))
反之,只有当Alice发送的量子态是 ρ i \rho_{i} ρi,同时Bob测量得到的结果是j时,才可以正确区分,概率是 T r ( Π i ρ i ) Tr\left( \Pi_{i}\rho_{i} \right) Tr(Πiρi)。则,Bob成功区分的平均概率为:
1 − P E = ∑ i = 1 n η i T r ( Π i ρ i ) 1 - P_{E} = {\sum\limits_{i = 1}^{n}{\eta_{i}Tr\left( \Pi_{i}\rho_{i} \right)}} 1PE=i=1nηiTr(Πiρi)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值