量子Fourier变换


前言

Fourier变换是科学研究中非常有用的一种数学工具。它的核心是把一个非常难解的问题,变换成另一个容易解决的问题,求解后然后再变换回原来的形式。
在这里插入图片描述

一、离散傅里叶变换

傅里叶变换是解决数学或计算机科学一些难题的一种重要的变换方法。其中,离散傅里叶变换(Discrete Fourier Translation)将一个N维复向量 ( x 1 , ⋯   , x N ) \left( x_{1},\cdots,x_{N} \right) (x1,,xN)转换为如下定义的复向量 ( y 1 , ⋯   , y N ) \left( y_{1},\cdots,y_{N} \right) (y1,,yN),
y k ≡ 1 N ∑ j = 0 N − 1 x j e 2 π i j k / N y_{k} \equiv \frac{1}{\sqrt{N}}{\sum\limits_{j = 0}^{N - 1}x_{j}}e^{2\pi ijk/N} ykN 1j=0N1xje2πijk/N

二、量子傅里叶变换

1.量子傅里叶变化简述

在量子领域,存在与离散傅里叶变换严格相同的映射变换,即量子傅里叶变换(Quantum Fourier Translation,以下简称QFT)。它是量子计算中一种重要的线性酉变换,在处

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值