文章目录
前言
Fourier变换是科学研究中非常有用的一种数学工具。它的核心是把一个非常难解的问题,变换成另一个容易解决的问题,求解后然后再变换回原来的形式。
一、离散傅里叶变换
傅里叶变换是解决数学或计算机科学一些难题的一种重要的变换方法。其中,离散傅里叶变换(Discrete Fourier Translation)将一个N维复向量 ( x 1 , ⋯ , x N ) \left( x_{1},\cdots,x_{N} \right) (x1,⋯,xN)转换为如下定义的复向量 ( y 1 , ⋯ , y N ) \left( y_{1},\cdots,y_{N} \right) (y1,⋯,yN),
y k ≡ 1 N ∑ j = 0 N − 1 x j e 2 π i j k / N y_{k} \equiv \frac{1}{\sqrt{N}}{\sum\limits_{j = 0}^{N - 1}x_{j}}e^{2\pi ijk/N} yk≡N1j=0∑N−1xje2πijk/N
二、量子傅里叶变换
1.量子傅里叶变化简述
在量子领域,存在与离散傅里叶变换严格相同的映射变换,即量子傅里叶变换(Quantum Fourier Translation,以下简称QFT)。它是量子计算中一种重要的线性酉变换,在处