二叉树的相关面试题

本文涵盖了递归和非递归方式实现二叉树的先中后序遍历,探讨了如何找到树中节点的后继节点,以及二叉树的序列化和反序列化方法。此外,还详细讲解了如何判断平衡二叉树和搜索二叉树/完全二叉树。
摘要由CSDN通过智能技术生成

1.递归方式实现二叉树先中后序遍历

public class Code01_DgModel {
    //定义节点的类型
    public class Node{
        public int value;
        public Node right;
        public Node left;

        public Node(int val){
            this.value = val;
        }
    }
    //先序遍历 头左右
    public void preOrderRecur(Node head){
        if(head==null){
            return;
        }
        System.out.println(head.value+ " ");
        preOrderRecur(head.left);
        preOrderRecur(head.right);
    }
    //中序遍历 左头右
    public void inOrderRecur(Node head){
        if(head==null){
            return;
        }

        inOrderRecur(head.left);
        System.out.println(head.value + " ");
        inOrderRecur(head.right);
    }
    //后续遍历 左右头
    public void inPosRecur(Node head){
        if(head==null){
            return;
        }

        inPosRecur(head.left);
        inPosRecur(head.right);
        System.out.println(head.value+ " ");
    }

}

在代码上展示打印递归版本的三种顺序的方式就是打印时机的不同

2.非递归方式实现二叉树的先中后序遍历

public class Code01_NoDgModel {

    public class Node {
        public int value;
        public Node right;
        public Node left;

        public Node(int val) {
            this.value = val;
        }
    }

    // 前序 中左右
    public void preOrderUnRecur(Node head) {

        if (head != null) {
            Stack<Node> stack = new Stack<Node>();
            //栈压节点
            stack.add(head);
            //这段代码的逻辑就是栈不空,弹出一个节点 弹出则压子节点的栈
            //遵循先有右压右后有左压左的原则 栈先进后出的作用下达到头左右的效果
            while (!stack.isEmpty()) {
                head = stack.pop();
                System.out.println(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值