Scalar, Vector, Matrix, Tensor, Array 傻傻分不清楚,看完这篇可视化你就明白!

本文介绍了数学中基本的数据表示形式,从标量、向量、矩阵到张量的演变,强调了它们在不同维度上的概念。标量仅包含大小,向量增加方向,矩阵扩展到二维,而张量则涵盖更高维度的数据结构。张量在物理学、机器学习等领域扮演重要角色,其rank、shape和type是关键属性。此外,还讨论了Python中数组与Numpy数组的区别,强调Numpy在数值计算中的高效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

标量、向量、矩阵、张量的关系

Scalar(标量) 

Vector(向量)

Matrix(矩阵)

Tensor(张量)

Array(数组)


标量、向量、矩阵、张量的关系

先上几张图感受下,Scalar - Vector - Matrix - Tensor其实就是数据维度逐渐上升的过程。

  

See the source image

点——标量(scalar)

线——向量(vector)

面——矩阵(matrix)

体——张量(tensor)

Scalar(标量) 

标量只有大小概念,没有方向的概念。通过一个具体的数值就能表达完整。

比如:重量、温度、长度、提及、时间、热量等都数据标量。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值