网易2018校园招聘:最长公共子括号序列 [python]

'''
[编程题] 最长公共子括号序列
时间限制:1秒
空间限制:100768K
一个合法的括号匹配序列被定义为:
1. 空串""是合法的括号序列
2. 如果"X"和"Y"是合法的序列,那么"XY"也是一个合法的括号序列
3. 如果"X"是一个合法的序列,那么"(X)"也是一个合法的括号序列
4. 每个合法的括号序列都可以由上面的规则生成
例如"", "()", "()()()", "(()())", "(((()))"都是合法的。
从一个字符串S中移除零个或者多个字符得到的序列称为S的子序列。
例如"abcde"的子序列有"abe","","abcde"等。
定义LCS(S,T)为字符串S和字符串T最长公共子序列的长度,即一个最长的序列W既是S的子序列也是T的子序列的长度。
小易给出一个合法的括号匹配序列s,小易希望你能找出具有以下特征的括号序列t:
1、t跟s不同,但是长度相同
2、t也是一个合法的括号匹配序列
3、LCS(s, t)是满足上述两个条件的t中最大的
因为这样的t可能存在多个,小易需要你计算出满足条件的t有多少个。


如样例所示: s = "(())()",跟字符串s长度相同的合法括号匹配序列有:
"()(())", "((()))", "()()()", "(()())",其中LCS( "(())()", "()(())" )为4,其他三个都为5,所以输出3. 
输入描述:
输入包括字符串s(4 ≤ |s| ≤ 50,|s|表示字符串长度),保证s是一个合法的括号匹配序列。




输出描述:
输出一个正整数,满足条件的t的个数。


输入例子1:
(())()


输出例子1:
3
'''



'''
解题思路:重要前提
  要解出这道题目,必须要知道一个重要的前提:满足条件的t和s最长公共子序列的长度必然是其原长度-1
  有了这个前提后,这道题就好做了。首先写个函数判断一个序列是否合法。
  接着遍历取出原序列中的任何一个元素,并放置在原序列中的任意其他位置,得到一个新序列,
  判断其是否合法,如果合法,就把它放进一个集合中(防重)。最后输出这个集合的长度即为满足条件的序列个数。
'''


'''
代码运行结果:
答案正确:恭喜!您提交的程序通过了所有的测试用例

'''


def isl(t1):
    length = len(t1)
    temp = 0
    for i in range(length):
        if t1[i] == '(': temp += 1
        else: temp -= 1
        if temp < 0:
            return 0
    return 1


def main(t):
    length = len(t)
    count = set()
    for i in range(length):
        temp1 = t[:i] + t[i+1:]
        for j in range(length):
            if i == j:
                continue
            temp2 = temp1[:j] + t[i] + temp1[j:]
            if isl(temp2):
                if temp2 != t:
                    count.add(temp2)
    print(len(count))

if __name__ == "__main__":
    string = input()
    main(string)


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我可以为你编写动态规划算法求解矩阵连乘和最长公共序列问题。 首先,我们来看矩阵连乘问题。假设有 $n$ 个矩阵 $A_1, A_2, \dots, A_n$,其维度分别为 $p_0 \times p_1, p_1 \times p_2, \dots, p_{n-1} \times p_n$。我们的目标是通过最少的乘法次数,将这 $n$ 个矩阵相乘得到最终的结果。根据动态规划的思想,我们可以定义一个 $n \times n$ 的二维数组 $m$,其中 $m[i][j]$ 表示从矩阵 $A_i$ 到 $A_j$ 的连乘所需的最少乘法次数。具体的动态规划算法如下: ```python def matrix_chain_order(p): n = len(p) - 1 # 矩阵个数 m = [[0] * n for _ in range(n)] s = [[0] * n for _ in range(n)] for l in range(2, n + 1): for i in range(n - l + 1): j = i + l - 1 m[i][j] = float('inf') for k in range(i, j): q = m[i][k] + m[k+1][j] + p[i]*p[k+1]*p[j+1] if q < m[i][j]: m[i][j] = q s[i][j] = k return m, s ``` 其中,$p$ 是一个长度为 $n+1$ 的数组,表示 $n$ 个矩阵的维度,即 $A_i$ 的维度为 $p_i \times p_{i+1}$。算法返回的 $m$ 数组即为最终的最少乘法次数,$s$ 数组用于记录最优的括号方式。具体来说,$s[i][j]$ 记录的是将 $A_i$ 到 $A_j$ 这段矩阵序列拆分为两部分的位置 $k$,使得 $A_i$ 到 $A_k$ 和 $A_{k+1}$ 到 $A_j$ 分别相乘所需的最少乘法次数之和最小。 接下来,我们来看最长公共序列问题。假设有两个序列 $X$ 和 $Y$,长度分别为 $m$ 和 $n$。我们的目标是找到它们的最长公共序列,即一个新的序列 $Z$,满足 $Z$ 是 $X$ 和 $Y$ 的序列,且 $Z$ 的长度最长。根据动态规划的思想,我们可以定义一个 $m \times n$ 的二维数组 $c$,其中 $c[i][j]$ 表示 $X$ 的前 $i$ 个元素和 $Y$ 的前 $j$ 个元素的最长公共序列的长度。具体的动态规划算法如下: ```python def lcs_length(X, Y): m, n = len(X), len(Y) c = [[0] * (n + 1) for _ in range(m + 1)] for i in range(1, m + 1): for j in range(1, n + 1): if X[i - 1] == Y[j - 1]: c[i][j] = c[i - 1][j - 1] + 1 else: c[i][j] = max(c[i - 1][j], c[i][j - 1]) return c ``` 其中,$X$ 和 $Y$ 分别表示两个序列,算法返回的 $c$ 数组即为最终的最长公共序列长度。如果需要求出最长公共序列本身,可以在算法中添加一个记录路径的数组 $b$,具体实现可以参考[这篇文章](https://www.cnblogs.com/-Ackerman/p/11390225.html)。 以上就是动态规划求解矩阵连乘和最长公共序列问题的算法实现。希望能够对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值