Problem Description
Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?
The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?
Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
Output
One integer per line representing the maximum of the total value (this number will be less than 2
31).
Sample Input
1 5 10 1 2 3 4 5 5 4 3 2 1
Sample Output
14
与HDU1203为同一类型题目
#include #include #include #define maxn 1010 int n,v; int va[maxn];//价值 int vo[maxn];//体积 int f[maxn]; using namespace std; void solve() { //f[v]表示把前i件物品放入容量为v的背包里得到的价值。把i从1~n(n件)循环后,最后f[v]表示所求最大值。 for(int i = 0; i < n; i++) { for(int j = v; j >= vo[i]; j--) { //第一件物品放或不放 //在体积为j的情况下,判断此时的最大价值 if(f[j - vo[i]] + va[i] > f[j]) { f[j] = f[j - vo[i]] + va[i]; } } } printf("%d\n", f[v]); } int main() { int t; while(~scanf("%d", &t)) { while(t--) { scanf("%d%d", &n, &v); for(int i = 0; i < n; i++) { scanf("%d", &va[i]); } for(int i = 0; i < n; i++) { scanf("%d", &vo[i]); } memset(f, 0, sizeof(f)); solve(); } } return 0; }