NMT和Attention cs224n

NMT(neural machine translation)

不管是传统学习还是深度学习,都是encoder-decoder的架构:
在这里插入图片描述

MT的优势

  • end-to-end training(也是所有深度学习的优势):
    为优化同一个损失函数调整所有参数
  • Distributed representation:
    更好地利用词语、短语之间的相似性(因为利用了word vector和sentence vector)
  • Better exploitation of context
    利用更多上下文——原文和部分译文的上下文,因为gate的出现,可以记忆更长的序列
  • more fluent text generation
    生成更流畅的文本

MT的缺陷

  • 无法显式的利用语义和语法的结构
  • 无法显式利用指代消解

attention机制

  • LSTM可以记忆大约30个词(但很重要因为它可以生成流畅的word)
  • attention可以记忆大约70个词

问题:

如下图,decoder依赖于最后一个encoder隐含层的输出。并将此输出状态一直传递下去,这会导致一些长序列上的记忆问题。
在这里插入图片描述
attention机制:
解决方法是将encoder的历史状态视作随机读取内存,这样不仅增加了源语言的维度,而且增加了记忆的持续时间(LSTM只是短时记忆)
理解一下:把之前的状态维护成一个pool,然后采用类似语料对齐的过程,decoder某一个状态的时候,访问特定的encoder状态。

  • which part of source are you next gonna to be translating
  • implicitly making connection between source target
    在这里插入图片描述
    一个非常棒的可视化,显示attention model成功地对齐了法语和英语,其中一小段语序的调整也反应出来了:
    在这里插入图片描述

原理
打分机制:
首先有一种打分机制,以前一刻的decoder状态和某个encoder状态为参数,输出得分:
s c o r e ( h t − 1 , h ^ s ) score(h_{t-1},\hat h_s) score(ht1,h^s
概率化:
得到各个encoder层的得分后softmax归一化分值转化为概率。
a t ( s ) = e s c o r e ( s ) ∑ e s c o r e a_t(s)=\frac{e^{score(s)}}{\sum e^{score}} at(s)=escoreescore(s)
加权:
加权和得到一个context vector,作为条件之一生成decoder的当前状态:
c t = ∑ s a t ( s ) h ^ s c_t=\sum_s a_t(s)\hat h_s ct=sat(s)h^s
原理图如下:
在这里插入图片描述
其中注意力函数就有多种多样的变形了。

decoder寻找

模型能够在给定原文s的情况下计算译文s¯的概率P(s¯|s)之后,就来到传统的问题了,找出最可能的译文
s ˉ ∗ = argmax ⁡ s ˉ ( P ( s ˉ ∣ s ) ) \bar{s}* = \operatorname{argmax}_{\bar{s}}(\mathbb{P}(\bar{s} | s )) sˉ=argmaxsˉ(P(sˉs))
在decoding的时候,朴素想法是生成所有的翻译,用语言模型打分,然后挑最大的。但译文数量是词表大小的指数函数,无法实现。

在这里我只想说,对于这种问题的:
老生常谈了,从不搜索到贪婪搜索到柱搜索,随处可见。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
NMT模型(Neural Machine Translation)和BERT模型(Bidirectional Encoder Representations from Transformers)在自然语言处理中有着不同的应用和特点。 1. 任务目标:NMT模型用于机器翻译任务,将一种语言的文本翻译成另一种语言。它是一种序列到序列(sequence-to-sequence)模型,由编码器和解码器组成。而BERT模型是一种通用的预训练模型,可以用于多种自然语言处理任务,如文本分类、命名实体识别、问答系统等。 2. 预训练方法:NMT模型通常使用监督学习进行训练,需要大量的平行语料(源语言和目标语言的对应文本)。BERT模型则是通过无监督学习进行预训练,使用大量的无标签文本。BERT利用了大规模的语料库进行掩码语言建模和下一句预测任务,从而学习到了丰富的语义表示。 3. 句子表示:NMT模型将整个句子编码为一个固定长度的向量表示,这个向量表示包含了句子的语义信息。BERT模型则是通过将输入句子分成多个token,并为每个token生成上下文相关的向量表示。BERT可以对不同位置的token进行建模,从而获得更细粒度的语义信息。 4. 微调方式:NMT模型的微调通常采用有监督学习,使用平行语料进行训练。BERT模型的微调则是在预训练模型的基础上,使用特定任务的有标签数据进行微调,使其适应特定任务的要求。 总之,NMT模型主要应用于机器翻译任务,而BERT模型是一种通用的预训练模型,可以用于多种自然语言处理任务。它们在预训练方法、句子表示和微调方式上存在差异。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值