什么是泊松分布?什么是泊松过程?

泊松分布是概率论中的一个重要概念,满足小概率事件、事件间独立且概率稳定等条件。它与二项分布有关,当n趋于无穷,p趋于0但期望lambda不变时,二项分布趋近于泊松分布。泊松过程是泊松分布的连续形式,具有到达率稳定、实验结果独立及极短时间内到达概率极小的特性。经典例子如公交到达站的间隔时间,其平均间隔时间可以通过泊松过程计算得出。
摘要由CSDN通过智能技术生成

1.泊松分布需要满足的条件(小概率事件,事件之间相互独立,概率是稳定的)

公式如下所示:

2. 泊松分布与二项分布之间的关系

泊松分布由二项分布演进而来。二项分布十分好理解,给你n次机会抛硬币,硬币正面向上的概率为p,问在这n次机会中有k次(k<=n)硬币朝上的概率为多少?

在这n次抛硬币中,硬币朝上的次数的期望有多少?

如果现在我能根据n的大小来控制p,从而控制这个期望,即无论n为多大,硬币朝上的次数的期望不变(恒为lambda):


那么当n趋于无穷的时候,P(K_heads)将趋于泊松分布,即:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值