1.泊松分布
泊松分布是二项分布的极限分布,假设有一列二项分布B(n,pn),均值为\(\lambda\),即\(\lim \limits_{n \rightarrow \infty} np_n=\lambda>0\),对任何非负整数k(即发生k次的概率)有\(\lim\limits_{n \rightarrow \infty} b(k;n,p_n)=\lim \limits_{n\rightarrow \infty}C^k_np_n^k(1-p_n)^{n-k}=e^{-\lambda}\frac{\lambda^k}{k!}\)。
证明:
\(\begin{align} C^k_n p_n^k(1-p_n)^{n-k} &= \frac{n!}{k!(n-k)!}p_n^k(1-p_n)^{n-k}\\ &=\frac{1\times2\times3\times...\times n}{k!\times1\times2\times3...\times(n-k) \times n^k}(1-p_n)^{-k}(np_n)^k(1-p_n)^n\\ &=\frac{n\times(n-1)\times(n-2)\times...\times(n-k+1)}{k!\times n^k}(1-p_n)^{-k}(np_n)^k(1-p_n)^n\\ &=\frac{1}{k!}(1-\frac{1}{n})(1-\frac{2}{n})...(1-\frac{k-1}{n})(1-p_n)^{-k}(np_n)^k(1-p_n)^n \end{align}\)
注意到\(\lim \limits_{n \rightarrow \infty}(np_n)^k=\lambda^k\),和\(\lim \limits_{n \rightarrow \infty}(1-p_n)^n=e^{-\lambda}\)。
定理证毕。
泊松分布是二项分布的极限分布,当n很大,p很小时,二项分布就可以近似地看