一元线性回归
估计参数
(1)a,b的最小二乘估计
b ^ = ∑ i = 1 n x i y i − n x ˉ y ˉ ∑ i = 1 n x i 2 − n x ˉ 2 = ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) ∑ i = 1 n ( x i − x ˉ ) 2 \hat { b } =\frac { \sum _{ i=1 }^{ n }{ { x }_{ i }{ y }_{ i } } -n\bar { x } \bar { y } }{ \sum _{ i=1 }^{ n }{ { x }_{ i }^{ 2 } } -n{ \bar { x } }^{ 2 } } =\frac { \sum _{ i=1 }^{ n }{ ({ x }_{ i }-\bar { x } )({ y }_{ i }-\bar { y } ) } }{ \sum _{ i=1 }^{ n }{ { ({ x }_{ i }-\bar { x } ) }^{ 2 } } } b^=∑i=1nxi2−nxˉ2∑i=1nxiyi−nxˉyˉ=∑i=1n(xi−xˉ)2∑i=1n(xi−xˉ)(yi−yˉ)
a ^ = y ˉ − b ^ x ˉ \hat { a } =\bar { y } -\hat { b } \bar { x } a^=yˉ−b^xˉ
(2) σ 2 {\sigma}^{2} σ2的估计
σ ^ 2 = 1 n ∑ i = 1 n ( y i − y ˉ ) 2 − b ^ 2 n ∑ i = 1 n ( x i − x ˉ ) 2 { \hat { \sigma } }^{ 2 }=\frac { 1 }{ n } \sum _{ i=1 }^{ n }{ { ({ y }_{ i }-\bar { y } ) }^{ 2 } } -\frac { { \hat { b } }^{ 2 } }{ n } \sum _{ i=1 }^{ n }{ { ({ x }_{ i }-\bar { x } ) }^{ 2 } } σ^2=n1∑i=1n(y