回归分析(五)

本文深入探讨了回归分析,包括一元线性回归的参数估计、假设检验和预测区间,以及多元线性回归的矩阵表示、参数估计、假设检验。通过对回归模型的分析,为统计预测和数据分析提供了理论基础。
摘要由CSDN通过智能技术生成

一元线性回归

估计参数
(1)a,b的最小二乘估计

b ^ = ∑ i = 1 n x i y i − n x ˉ y ˉ ∑ i = 1 n x i 2 − n x ˉ 2 = ∑ i = 1 n ( x i − x ˉ ) ( y i − y ˉ ) ∑ i = 1 n ( x i − x ˉ ) 2 \hat { b } =\frac { \sum _{ i=1 }^{ n }{ { x }_{ i }{ y }_{ i } } -n\bar { x } \bar { y } }{ \sum _{ i=1 }^{ n }{ { x }_{ i }^{ 2 } } -n{ \bar { x } }^{ 2 } } =\frac { \sum _{ i=1 }^{ n }{ ({ x }_{ i }-\bar { x } )({ y }_{ i }-\bar { y } ) } }{ \sum _{ i=1 }^{ n }{ { ({ x }_{ i }-\bar { x } ) }^{ 2 } } } b^=i=1nxi2nxˉ2i=1nxiyinxˉyˉ=i=1n(xixˉ)2i=1n(xixˉ)(yiyˉ)
a ^ = y ˉ − b ^ x ˉ \hat { a } =\bar { y } -\hat { b } \bar { x } a^=yˉb^xˉ

(2) σ 2 {\sigma}^{2} σ2的估计

σ ^ 2 = 1 n ∑ i = 1 n ( y i − y ˉ ) 2 − b ^ 2 n ∑ i = 1 n ( x i − x ˉ ) 2 { \hat { \sigma } }^{ 2 }=\frac { 1 }{ n } \sum _{ i=1 }^{ n }{ { ({ y }_{ i }-\bar { y } ) }^{ 2 } } -\frac { { \hat { b } }^{ 2 } }{ n } \sum _{ i=1 }^{ n }{ { ({ x }_{ i }-\bar { x } ) }^{ 2 } } σ^2=n1i=1n(y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值