1. 简介
上一篇文章详细分析了服务导出的过程,本篇文章我们趁热打铁,继续分析服务引用过程。在 Dubbo 中,我们可以通过两种方式引用远程服务。第一种是使用服务直连的方式引用服务,第二种方式是基于注册中心进行引用。服务直连的方式仅适合在调试或测试服务的场景下使用,不适合在线上环境使用。因此,本文我将重点分析通过注册中心引用服务的过程。从注册中心中获取服务配置只是服务引用过程中的一环,除此之外,服务消费者还需要经历 Invoker 创建、代理类创建等步骤。这些步骤,将在后续章节中一一进行分析。
2.服务引用原理
Dubbo 服务引用的时机有两个,第一个是在 Spring 容器调用 ReferenceBean 的 afterPropertiesSet 方法时引用服务,第二个是在 ReferenceBean 对应的服务被注入到其他类中时引用。这两个引用服务的时机区别在于,第一个是饿汉式的,第二个是懒汉式的。默认情况下,Dubbo 使用懒汉式引用服务。如果需要使用饿汉式,可通过配置 <dubbo:reference> 的 init 属性开启。下面我们按照 Dubbo 默认配置进行分析,整个分析过程从 ReferenceBean 的 getObject 方法开始。当我们的服务被注入到其他类中时,Spring 会第一时间调用 getObject 方法,并由该方法执行服务引用逻辑。按照惯例,在进行具体工作之前,需先进行配置检查与收集工作。接着根据收集到的信息决定服务用的方式,有三种,第一种是引用本地 (JVM) 服务,第二是通过直连方式引用远程服务,第三是通过注册中心引用远程服务。不管是哪种引用方式,最后都会得到一个 Invoker 实例。如果有多个注册中心,多个服务提供者,这个时候会得到一组 Invoker 实例,此时需要通过集群管理类 Cluster 将多个 Invoker 合并成一个实例。合并后的 Invoker 实例已经具备调用本地或远程服务的能力了,但并不能将此实例暴露给用户使用,这会对用户业务代码造成侵入。此时框架还需要通过代理工厂类 (ProxyFactory) 为服务接口生成代理类,并让代理类去调用 Invoker 逻辑。避免了 Dubbo 框架代码对业务代码的侵入,同时也让框架更容易使用。
以上就是服务引用的大致原理,下面我们深入到代码中,详细分析服务引用细节。
配置检查及组装
组装过程中有一部是处理点对点调用逻辑,代码中的url即point-to-point的url.
判断是injvm调用还是远程调用
则根据 url 的协议、scope 以及 injvm 等参数检测是否需要本地引用
比如如果用户显式配置了 scope=local,或者consumer和provider同时在一个jvm中启动, 此时 isInjvmRefer 返回 true
组装注册中心或者直连服务的urls
如果配置了多个注册中心或者明确配置了多个提供者,则最终会得到多个url。
生成Invoker实例
DubboProtocol的refer方法
最核心的是getClients方法,这个方法最终会创建一个客户端,默认是nettyClient
最终生成DubboInvoker,底层通过nettyClient通信
RegistryProtocol的refer方法
注册consumerURL到注册中心,并且订阅/dubbo/#{serviceName}/providers、configurators、routers节点.
RegistryDirectory 是一种动态服务目录,实现了 NotifyListener 接口。当注册中心服务配置发生变化后,RegistryDirectory 可收到与当前服务相关的变化。收到变更通知后,RegistryDirectory 可根据配置变更信息刷新 Invoker 列表。RegistryDirectory 中有几个比较重要的逻辑,第一是 Invoker 的列举逻辑,第二是接收服务配置变更的逻辑,第三是 Invoker 列表的刷新逻辑。
RegistryDirectory的服务刷新及路由
Cluster
为了避免单点故障,现在的应用通常至少会部署在两台服务器上。对于一些负载比较高的服务,会部署更多的服务器。这样,在同一环境下的服务提供者数量会大于1。对于服务消费者来说,同一环境下出现了多个服务提供者。这时会出现一个问题,服务消费者需要决定选择哪个服务提供者进行调用。另外服务调用失败时的处理措施也是需要考虑的,是重试呢,还是抛出异常,亦或是只打印异常等。为了处理这些问题,Dubbo 定义了集群接口 Cluster 以及 Cluster Invoker。集群 Cluster 用途是将多个服务提供者合并为一个 Cluster Invoker,并将这个 Invoker 暴露给服务消费者。这样一来,服务消费者只需通过这个 Invoker 进行远程调用即可,至于具体调用哪个服务提供者,以及调用失败后如何处理等问题,现在都交给集群模块去处理。集群模块是服务提供者和服务消费者的中间层,为服务消费者屏蔽了服务提供者的情况,这样服务消费者就可以专心处理远程调用相关事宜。比如发请求,接受服务提供者返回的数据等。这就是集群的作用。
Dubbo 提供了多种集群实现,包含但不限于 Failover Cluster、Failfast Cluster 和 Failsafe Cluster 等。每种集群实现类的用途不同,接下来会一一进行分析。
2. 集群容错
在对集群相关代码进行分析之前,这里有必要先来介绍一下集群容错的所有组件。包含 Cluster、Cluster Invoker、Directory、Router 和 LoadBalance 等。
集群工作过程可分为两个阶段,第一个阶段是在服务消费者初始化期间,集群 Cluster 实现类为服务消费者创建 Cluster Invoker 实例,即上图中的 merge 操作。第二个阶段是在服务消费者进行远程调用时。以 FailoverClusterInvoker 为例,该类型 Cluster Invoker 首先会调用 Directory 的 list 方法列举 Invoker 列表(可将 Invoker 简单理解为服务提供者)。Directory 的用途是保存 Invoker,可简单类比为 List<Invoker>。其实现类 RegistryDirectory 是一个动态服务目录,可感知注册中心配置的变化,它所持有的 Invoker 列表会随着注册中心内容的变化而变化。每次变化后,RegistryDirectory 会动态增删 Invoker,并调用 Router 的 route 方法进行路由,过滤掉不符合路由规则的 Invoker。当 FailoverClusterInvoker 拿到 Directory 返回的 Invoker 列表后,它会通过 LoadBalance 从 Invoker 列表中选择一个 Invoker。最后 FailoverClusterInvoker 会将参数传给 LoadBalance 选择出的 Invoker 实例的 invoke 方法,进行真正的远程调用。
以上就是集群工作的整个流程,这里并没介绍集群是如何容错的。Dubbo 主要提供了这样几种容错方式:
- Failover Cluster - 失败自动切换
- Failfast Cluster - 快速失败
- Failsafe Cluster - 失败安全
- Failback Cluster - 失败自动恢复
- Forking Cluster - 并行调用多个服务提供者
我们在上一章看到了两个概念,分别是集群接口 Cluster 和 Cluster Invoker,这两者是不同的。Cluster 是接口,而 Cluster Invoker 是一种 Invoker。服务提供者的选择逻辑,以及远程调用失败后的的处理逻辑均是封装在 Cluster Invoker 中。那么 Cluster 接口和相关实现类有什么用呢?用途比较简单,仅用于生成 Cluster Invoker。下面我们来看一下源码。
public class FailoverCluster implements Cluster {
public final static String NAME = "failover";
@Override
public <T> Invoker<T> join(Directory<T> directory) throws RpcException {
// 创建并返回 FailoverClusterInvoker 对象
return new FailoverClusterInvoker<T>(directory);
}
}
如上,FailoverCluster 总共就包含这几行代码,用于创建 FailoverClusterInvoker 对象,很简单。下面再看一个。
public class FailbackCluster implements Cluster {
public final static String NAME = "failback";
@Override
public <T> Invoker<T> join(Directory<T> directory) throws RpcException {
// 创建并返回 FailbackClusterInvoker 对象
return new FailbackClusterInvoker<T>(directory);
}
}
我们首先从各种 Cluster Invoker 的父类 AbstractClusterInvoker 源码开始说起。前面说过,集群工作过程可分为两个阶段,第一个阶段是在服务消费者初始化期间,这个在服务引用那篇文章中分析过,就不赘述。第二个阶段是在服务消费者进行远程调用时,此时 AbstractClusterInvoker 的 invoke 方法会被调用。列举 Invoker,负载均衡等操作均会在此阶段被执行。因此下面先来看一下 invoke 方法的逻辑。
public Result invoke(final Invocation invocation) throws RpcException {
checkWhetherDestroyed();
LoadBalance loadbalance = null;
// 绑定 attachments 到 invocation 中.
Map<String, String> contextAttachments = RpcContext.getContext().getAttachments();
if (contextAttachments != null && contextAttachments.size() != 0) {
((RpcInvocation) invocation).addAttachments(contextAttachments);
}
// 列举 Invoker
List<Invoker<T>> invokers = list(invocation);
if (invokers != null && !invokers.isEmpty()) {
// 加载 LoadBalance
loadbalance = ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension(invokers.get(0).getUrl()
.getMethodParameter(RpcUtils.getMethodName(invocation), Constants.LOADBALANCE_KEY, Constants.DEFAULT_LOADBALANCE));
}
RpcUtils.attachInvocationIdIfAsync(getUrl(), invocation);
// 调用 doInvoke 进行后续操作
return doInvoke(invocation, invokers, loadbalance);
}
// 抽象方法,由子类实现
protected abstract Result doInvoke(Invocation invocation, List<Invoker<T>> invokers,
LoadBalance loadbalance) throws RpcException;
AbstractClusterInvoker 的 invoke 方法主要用于列举 Invoker,以及加载 LoadBalance。最后再调用模板方法 doInvoke 进行后续操作。下面我们来看一下 Invoker 列举方法 list(Invocation) 的逻辑,如下:
protected List<Invoker<T>> list(Invocation invocation) throws RpcException {
// 调用 Directory 的 list 方法列举 Invoker
List<Invoker<T>> invokers = directory.list(invocation);
return invokers;
}
如上,AbstractClusterInvoker 中的 list 方法做的事情很简单,只是简单的调用了 Directory 的 list 方法,没有其他更多的逻辑了。Directory 即相关实现类在前文已经分析过,这里就不多说了。接下来,我们把目光转移到 AbstractClusterInvoker 的各种实现类上,来看一下这些实现类是如何实现 doInvoke 方法逻辑的。
3.2.1 FailoverClusterInvoker
FailoverClusterInvoker 在调用失败时,会自动切换 Invoker 进行重试。默认配置下,Dubbo 会使用这个类作为缺省 Cluster Invoker。下面来看一下该类的逻辑。
public class FailoverClusterInvoker<T> extends AbstractClusterInvoker<T> {
// 省略部分代码
@Override
public Result doInvoke(Invocation invocation, final List<Invoker<T>> invokers, LoadBalance loadbalance) throws RpcException {
List<Invoker<T>> copyinvokers = invokers;
checkInvokers(copyinvokers, invocation);
// 获取重试次数
int len = getUrl().getMethodParameter(invocation.getMethodName(), Constants.RETRIES_KEY, Constants.DEFAULT_RETRIES) + 1;
if (len <= 0) {
len = 1;
}
RpcException le = null;
List<Invoker<T>> invoked = new ArrayList<Invoker<T>>(copyinvokers.size());
Set<String> providers = new HashSet<String>(len);
// 循环调用,失败重试
for (int i = 0; i < len; i++) {
if (i > 0) {
checkWhetherDestroyed();
// 在进行重试前重新列举 Invoker,这样做的好处是,如果某个服务挂了,
// 通过调用 list 可得到最新可用的 Invoker 列表
copyinvokers = list(invocation);
// 对 copyinvokers 进行判空检查
checkInvokers(copyinvokers, invocation);
}
// 通过负载均衡选择 Invoker
Invoker<T> invoker = select(loadbalance, invocation, copyinvokers, invoked);
// 添加到 invoker 到 invoked 列表中
invoked.add(invoker);
// 设置 invoked 到 RPC 上下文中
RpcContext.getContext().setInvokers((List) invoked);
try {
// 调用目标 Invoker 的 invoke 方法
Result result = invoker.invoke(invocation);
return result;
} catch (RpcException e) {
if (e.isBiz()) {
throw e;
}
le = e;
} catch (Throwable e) {
le = new RpcException(e.getMessage(), e);
} finally {
providers.add(invoker.getUrl().getAddress());
}
}
// 若重试失败,则抛出异常
throw new RpcException(..., "Failed to invoke the method ...");
}
}
如上,FailoverClusterInvoker 的 doInvoke 方法首先是获取重试次数,然后根据重试次数进行循环调用,失败后进行重试。在 for 循环内,首先是通过负载均衡组件选择一个 Invoker,然后再通过这个 Invoker 的 invoke 方法进行远程调用。如果失败了,记录下异常,并进行重试。重试时会再次调用父类的 list 方法列举 Invoker。整个流程大致如此,不是很难理解。
负载均衡
LoadBalance 中文意思为负载均衡,它的职责是将网络请求,或者其他形式的负载“均摊”到不同的机器上。避免集群中部分服务器压力过大,而另一些服务器比较空闲的情况。通过负载均衡,可以让每台服务器获取到适合自己处理能力的负载。在为高负载服务器分流的同时,还可以避免资源浪费,一举两得。负载均衡可分为软件负载均衡和硬件负载均衡。在我们日常开发中,一般很难接触到硬件负载均衡。但软件负载均衡还是可以接触到的,比如 Nginx。在 Dubbo 中,也有负载均衡的概念和相应的实现。Dubbo 需要对服务消费者的调用请求进行分配,避免少数服务提供者负载过大。服务提供者负载过大,会导致部分请求超时。因此将负载均衡到每个服务提供者上,是非常必要的。Dubbo 提供了4种负载均衡实现,分别是基于权重随机算法的 RandomLoadBalance、基于最少活跃调用数算法的 LeastActiveLoadBalance、基于 hash 一致性的 ConsistentHashLoadBalance,以及基于加权轮询算法的 RoundRobinLoadBalance。
服务调用过程
在前面的文章中,我们分析了 Dubbo SPI、服务导出与引入、以及集群容错方面的代码。经过前文的铺垫,本篇文章我们终于可以分析服务调用过程了。Dubbo 服务调用过程比较复杂,包含众多步骤,比如发送请求、编解码、服务降级、过滤器链处理、序列化、线程派发以及响应请求等步骤。限于篇幅原因,本篇文章无法对所有的步骤一一进行分析。本篇文章将会重点分析请求的发送与接收、编解码、线程派发以及响应的发送与接收等过程,至于服务降级、过滤器链和序列化大家自行进行分析,也可以将其当成一个黑盒,暂时忽略也没关系。介绍完本篇文章要分析的内容,接下来我们进入正题吧。
2. 源码分析
在进行源码分析之前,我们先来通过一张图了解 Dubbo 服务调用过程。
首先服务消费者通过代理对象 Proxy 发起远程调用,接着通过网络客户端 Client 将编码后的请求发送给服务提供方的网络层上,也就是 Server。Server 在收到请求后,首先要做的事情是对数据包进行解码。然后将解码后的请求发送至分发器 Dispatcher,再由分发器将请求派发到指定的线程池上,最后由线程池调用具体的服务。这就是一个远程调用请求的发送与接收过程。至于响应的发送与接收过程,这张图中没有表现出来。对于这两个过程,我们也会进行详细分析。
Dubbo 将底层通信框架中接收请求的线程称为 IO 线程。如果一些事件处理逻辑可以很快执行完,比如只在内存打一个标记,此时直接在 IO 线程上执行该段逻辑即可。但如果事件的处理逻辑比较耗时,比如该段逻辑会发起数据库查询或者 HTTP 请求。此时我们就不应该让事件处理逻辑在 IO 线程上执行,而是应该派发到线程池中去执行。原因也很简单,IO 线程主要用于接收请求,如果 IO 线程被占满,将导致它不能接收新的请求。
以上就是线程派发的背景,下面我们再来通过 Dubbo 调用图,看一下线程派发器所处的位置。
如上图,红框中的 Dispatcher 就是线程派发器。需要说明的是,Dispatcher 真实的职责创建具有线程派发能力的 ChannelHandler,比如 AllChannelHandler、MessageOnlyChannelHandler 和 ExecutionChannelHandler 等,其本身并不具备线程派发能力。Dubbo 支持 5 种不同的线程派发策略,下面通过一个表格列举一下。
策略 | 用途 |
---|---|
all | 所有消息都派发到线程池,包括请求,响应,连接事件,断开事件等 |
direct | 所有消息都不派发到线程池,全部在 IO 线程上直接执行 |
message | 只有请求和响应消息派发到线程池,其它消息均在 IO 线程上执行 |
execution | 只有请求消息派发到线程池,不含响应。其它消息均在 IO 线程上执行 |
connection | 在 IO 线程上,将连接断开事件放入队列,有序逐个执行,其它消息派发到线程池 |
默认配置下,Dubbo 使用 all
派发策略,即将所有的消息都派发到线程池中。
2.1 服务调用方式
Dubbo 支持同步和异步两种调用方式,其中异步调用还可细分为“有返回值”的异步调用和“无返回值”的异步调用。所谓“无返回值”异步调用是指服务消费方只管调用,但不关心调用结果,此时 Dubbo 会直接返回一个空的 RpcResult。若要使用异步特性,需要服务消费方手动进行配置。默认情况下,Dubbo 使用同步调用方式。
获取对应的exporter的步骤