POJ2385 Apple Catching(挑战程序设计)dp

这篇博客介绍了一道关于苹果从树上掉落的动态规划题目。题目要求根据苹果树的位置和步数,计算出最多能接住多少个苹果。通过预处理和状态转移方程,博主解析了如何用dp来解决这个问题,强调了状态定义和状态转移的重要性。虽然题目简单,但博主在实际解题过程中遇到了困难,最终成功解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题链接

思路

本题就是以步数作为dp条件,如果在第一棵树下面,步数一定是偶数,如果在第二棵树下,步数一定是奇数步,那么对于每一秒苹果的下落,就给有可能在这颗树下的步数表示的状态加1,然后当前这一步可以一直站在这里不动,也可以由上一步走过来得到,那么就是取 m a x ( f [ i − 1 ] , f [ i ] ) + 1 max(f[i - 1], f[i]) + 1 max(f[i1],f[i])+1

代码

#include<bits/stdc++.h>
using namespace std;
const int N = 1005;
int a[N];
int f[N];
int main()
{
	int n, m;
	while (scanf("%d%d", &n, &m) != EOF)
	{
		memset(a, 0, sizeof a);
		memset(f, 0, sizeof f);
		for (int i = 1; i <= n; i ++ ) cin >> a[i];
		int res = 0; 
		for (int i = 1; i <= n; i ++ )
		{
			if (a[i] == 1) 
			{
				f[0] ++;//提前预处理0,因为0不够减1
				for (int j = 2; j <= m; j += 2 )
				{
					f[j] = max(f[j], f[j - 1]) + 1; 
				}
			}
			else
			{
				for (int j = 1; j <= m; j += 2 )
				{
					f[j] = max(f[j], f[j - 1]) + 1; 
				}
			}
		}
		for (int i = 1; i <= m; i ++ )
		{
			res = max(f[i], res);
		}
		cout << res << endl;
	}
	return 0;
}

总结

是一道非常简单的dp题,可是我想了好久都没有写出来,真难啊。

参考:https://blog.csdn.net/sotifish/article/details/26863921

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值