聚类和分类的区别

    分类和聚类是两类不同的机器学习算法。简单来说,分类就是给事物分配标签,聚类就是将相似的事物放在一起

    分类简单来说,就是根据文本的特征或属性,划分到已有的类别中。也就是说,这些类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。

    聚类的理解更简单,就是你压根不知道数据会分为几类,通过聚类分析将数据或者说用户聚合成几个群体,那就是聚类了。聚类不需要对数据进行训练和学习。

小结: 分类属于监督学习,聚类属于无监督学习。

### 聚类分类的主要区别 #### 定义区分 聚类是一种无监督学习技术,旨在发现数据中的自然分组或簇。这些簇内的对象彼此相似度较高,而与其他簇的对象相异较大[^1]。相反,分类属于有监督的学习过程,通过已知类别标签的数据训练模型来预测新观测值所属的具体类别[^2]。 #### 数据需求对比 在执行聚类分析时,并不需要预先给定任何关于输入实例应归属于哪个群体的信息;而在构建分类器之前,则通常需要一组带有明确标记(即目标变量)的历史记录作为训练素材[^3]。 #### 应用场景举例说明 - **聚类应用** 对客户行为模式进行探索性研究,识别不同类型的消费者群体以便实施精准营销策略。 - **分类应用场景** 利用历史交易记录判断信用卡申请者是否存在潜在欺诈风险,从而决定是否批准授信请求。 ```python from sklearn.cluster import KMeans from sklearn.datasets import make_classification import matplotlib.pyplot as plt # 创建模拟数据用于展示两类算法的不同之处 X, y = make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=0, random_state=4) plt.scatter(X[:, 0], X[:, 1]) plt.title('原始未标注数据') plt.show() # 使用K均值聚类算法处理上述数据集 kmeans = KMeans(n_clusters=2).fit(X) labels = kmeans.labels_ plt.scatter(X[:, 0], X[:, 1], c=labels) plt.title('经由K-means获得的两个簇') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值