1.实验数据需求
为了对采集的压力实验数据做特征工程,需要对信号进行时域的统计特征提取,包含了均值、均方根、偏度、峭度、波形因子、波峰因子、脉冲因子、峭度因子等,现用python对其进行实现。
2.python实现
其中的输入参数含义:
①data:实验数据的DataFrame
②p1:所截取实验信号的起始采样点位置
③p2:所截取实验信号的终止采样点位置
from pandas import Series
import math
pstf_list=[]
def psfeatureTime(data,p1,p2):
#均值
df_mean=data[p1:p2].mean()
#方差
df_var=data[p1:p2].var()
#标准差
df_std=data[p1:p2].std()
#均方根
df_rms=math.sqrt(pow(df_mean,2) + pow(df_std,2))
#偏度
df_skew=data[p1:p2].skew()
#峭度
df_kurt=data[p1:p2].kurt()
sum=0
for i in range(p1,p2):
sum+=math.sqrt(abs(data[i]))
#波形因子
df_boxing=df_rms / (abs(data[p1:p2]).mean())
#峰值因子
df_fengzhi=(max(data[p1:p2])) / df_rms
#脉冲因子
df_maichong=(max(data[p1:p2])) / (abs(data[p1:p2]).mean())
#裕度因子
df_yudu&#