Octree data structure

原文链接:Octree data structure

#include <string>
#include <iostream>

/*
 * Code for an octree that demonstrates insertion and search
 */
#include <iostream>
#include <vector>

#define TLF 0    // top left front
#define TRF 1    // top right front
#define BRF 2    // bottom right front
#define BLF 3    // bottom left front
#define TLB 4    // top left back
#define TRB 5    // top right back
#define BRB 6    // bottom right back
#define BLB 7    // bottom left back

struct Point {
    int x;
    int y;
    int z;

    Point() : x(-1), y(-1), z(-1) {}

    Point(int a, int b, int c) : x(a), y(b), z(c) {}
};

class Octree {
    // if point == NULL, node is regional.
    // if point == (-1, -1, -1), node is empty.
    Point *point;

    Point *top_left_front, *bottom_right_back;   // represents the space.
    std::vector<Octree *> children;

public:
    Octree() {
        // to declare empty node
        point = new Point();
    }

    Octree(int x, int y, int z) {
        // to declare point node
        point = new Point(x, y, z);
    }

    Octree(int x1, int y1, int z1, int x2, int y2, int z2) {
        if(x2 < x1 || y2 < y1 || z2 < z1)
            return;
        point = nullptr;
        top_left_front = new Point(x1, y1, z1);
        bottom_right_back = new Point(x2, y2, z2);
        children.assign(8, nullptr);
        for(int i = TLF; i <= BLB; ++i)
            children[i] = new Octree();
    }

    void insert(int x, int y, int z) {
        if(x < top_left_front->x || x > bottom_right_back->x
                || y < top_left_front->y || y > bottom_right_back->y
                || z < top_left_front->z || z > bottom_right_back->z)
            return;
        int midx = (top_left_front->x + bottom_right_back->x) >> 1,
            midy = (top_left_front->y + bottom_right_back->y) >> 1,
            midz = (top_left_front->z + bottom_right_back->z) >> 1;
        int pos = -1;
        if(x <= midx) {
            if(y <= midy) {
                if(z <= midz)
                    pos = TLF;
                else
                    pos = TLB;
            } else {
                if(z <= midz)
                    pos = BLF;
                else
                    pos = BLB;
            }
        } else {
            if(y <= midy) {
                if(z <= midz)
                    pos = TRF;
                else
                    pos = TRB;
            } else {
                if(z <= midz)
                    pos = BRF;
                else
                    pos = BRB;
            }
        }

        if(children[pos]->point == nullptr) {
            // if region node
            children[pos]->insert(x, y, z);
            return;
        } else if(children[pos]->point->x == -1) {
            // if empty node
            delete children[pos];
            children[pos] = new Octree(x, y, z);
            return;
        } else {
            int x_ = children[pos]->point->x,
                y_ = children[pos]->point->y,
                z_ = children[pos]->point->z;
            delete children[pos];
            children[pos] = nullptr;
            if(pos == TLF) {
                children[pos] = new Octree(top_left_front->x, top_left_front->y, top_left_front->z,
                                           midx, midy, midz);
            } else if(pos == TRF) {
                children[pos] = new Octree(midx + 1, top_left_front->y, top_left_front->z,
                                           bottom_right_back->x, midy, midz);
            } else if(pos == BRF) {
                children[pos] = new Octree(midx + 1, midy + 1, top_left_front->z,
                                           bottom_right_back->x, bottom_right_back->y, midz);
            } else if(pos == BLF) {
                children[pos] = new Octree(top_left_front->x, midy + 1, top_left_front->z,
                                           midx, bottom_right_back->y, midz);
            } else if(pos == TLB) {
                children[pos] = new Octree(top_left_front->x, top_left_front->y, midz + 1,
                                           midx, midy, bottom_right_back->z);
            } else if(pos == TRB) {
                children[pos] = new Octree(midx + 1, top_left_front->y, midz + 1,
                                           bottom_right_back->x, midy, bottom_right_back->z);
            } else if(pos == BRB) {
                children[pos] = new Octree(midx + 1, midy + 1, midz + 1,
                                           bottom_right_back->x, bottom_right_back->y, bottom_right_back->z);
            } else if(pos == BLB) {
                children[pos] = new Octree(top_left_front->x, midy + 1, midz + 1,
                                           midx, bottom_right_back->y, bottom_right_back->z);
            }
            children[pos]->insert(x_, y_, z_);
            children[pos]->insert(x, y, z);
        }
    }

    bool find(int x, int y, int z) {
        if(x < top_left_front->x || x > bottom_right_back->x
                || y < top_left_front->y || y > bottom_right_back->y
                || z < top_left_front->z || z > bottom_right_back->z)
            return 0;
        int midx = (top_left_front->x + bottom_right_back->x) >> 1,
            midy = (top_left_front->y + bottom_right_back->y) >> 1,
            midz = (top_left_front->z + bottom_right_back->z) >> 1;
        int pos = -1;
        if(x <= midx) {
            if(y <= midy) {
                if(z <= midz)
                    pos = TLF;
                else
                    pos = TLB;
            } else {
                if(z <= midz)
                    pos = BLF;
                else
                    pos = BLB;
            }
        } else {
            if(y <= midy) {
                if(z <= midz)
                    pos = TRF;
                else
                    pos = TRB;
            } else {
                if(z <= midz)
                    pos = BRF;
                else
                    pos = BRB;
            }
        }
        if(children[pos]->point == nullptr) {
            // if region node
            return children[pos]->find(x, y, z);
        } else if(children[pos]->point->x == -1) {
            // if empty node
            return 0;
        } else {
            if(x == children[pos]->point->x && y == children[pos]->point->y
                    && z == children[pos]->point->z)
                return 1;
        }
        return 0;
    }
};

int main() {
    Octree tree(1, 1, 1, 4, 4, 4);
    std::cout << "Insert (3, 3, 3)\n";
    tree.insert(3, 3, 3);
    std::cout << "Insert (3, 3, 4)\n";
    tree.insert(3, 3, 4);

    std::cout << "Find (3, 3, 3):\n";
    std::cout << (tree.find(3, 3, 3) ? "True\n" : "False\n");
    std::cout << "Find (3, 4, 4):\n";
    std::cout << (tree.find(3, 4, 4) ? "True\n" : "False\n");
    std::cout << "Insert (3, 4, 4)\n";
    tree.insert(3, 4, 4);
    std::cout << "Find (3, 4, 4):\n";
    std::cout << (tree.find(3, 4, 4) ? "True\n" : "False\n");
    return 0;
}

补充:2019年11月8日

今天在 Github 上又发现一个写的比较好的八叉树,链接:brandonpelfrey/SimpleOctree

核心代码:

#ifndef Octree_H
#define Octree_H

#include <cstddef>
#include <vector>
#include "OctreePoint.h"

namespace brandonpelfrey {

	/**!
	 *
	 */
	class Octree {
		// Physical position/size. This implicitly defines the bounding
		// box of this node
		Vec3 origin;         //! The physical center of this node
		Vec3 halfDimension;  //! Half the width/height/depth of this node

		// The tree has up to eight children and can additionally store
		// a point, though in many applications only, the leaves will store data.
		Octree *children[8]; //! Pointers to child octants
		OctreePoint *data;   //! Data point to be stored at a node

		/*
				Children follow a predictable pattern to make accesses simple.
				Here, - means less than 'origin' in that dimension, + means greater than.
				child:	0 1 2 3 4 5 6 7
				x:      - - - - + + + +
				y:      - - + + - - + +
				z:      - + - + - + - +
		 */

	public:
		Octree(const Vec3 &origin, const Vec3 &halfDimension)
			: origin(origin), halfDimension(halfDimension), data(NULL) {
			// Initially, there are no children
			for(int i = 0; i < 8; ++i)
				children[i] = NULL;
		}

		Octree(const Octree &copy)
			: origin(copy.origin), halfDimension(copy.halfDimension), data(copy.data) {

		}

		~Octree() {
			// Recursively destroy octants
			for(int i = 0; i < 8; ++i)
				delete children[i];
		}

		// Determine which octant of the tree would contain 'point'
		int getOctantContainingPoint(const Vec3 &point) const {
			int oct = 0;
			if(point.x >= origin.x) oct |= 4;
			if(point.y >= origin.y) oct |= 2;
			if(point.z >= origin.z) oct |= 1;
			return oct;
		}

		bool isLeafNode() const {
			// This is correct, but overkill. See below.
			/*
				 for(int i=0; i<8; ++i)
				 if(children[i] != NULL)
				 return false;
				 return true;
			 */

			// We are a leaf iff we have no children. Since we either have none, or
			// all eight, it is sufficient to just check the first.
			return children[0] == NULL;
		}

		void insert(OctreePoint *point) {
			// If this node doesn't have a data point yet assigned
			// and it is a leaf, then we're done!
			if(isLeafNode()) {
				if(data == NULL) {
					data = point;
					return;
				} else {
					// We're at a leaf, but there's already something here
					// We will split this node so that it has 8 child octants
					// and then insert the old data that was here, along with
					// this new data point

					// Save this data point that was here for a later re-insert
					OctreePoint *oldPoint = data;
					data = NULL;

					// Split the current node and create new empty trees for each
					// child octant.
					for(int i = 0; i < 8; ++i) {
						// Compute new bounding box for this child
						Vec3 newOrigin = origin;
						newOrigin.x += halfDimension.x * (i & 4 ? .5f : -.5f);
						newOrigin.y += halfDimension.y * (i & 2 ? .5f : -.5f);
						newOrigin.z += halfDimension.z * (i & 1 ? .5f : -.5f);
						children[i] = new Octree(newOrigin, halfDimension * .5f);
					}

					// Re-insert the old point, and insert this new point
					// (We wouldn't need to insert from the root, because we already
					// know it's guaranteed to be in this section of the tree)
					children[getOctantContainingPoint(oldPoint->getPosition())]->insert(oldPoint);
					children[getOctantContainingPoint(point->getPosition())]->insert(point);
				}
			} else {
				// We are at an interior node. Insert recursively into the
				// appropriate child octant
				int octant = getOctantContainingPoint(point->getPosition());
				children[octant]->insert(point);
			}
		}

		// This is a really simple routine for querying the tree for points
		// within a bounding box defined by min/max points (bmin, bmax)
		// All results are pushed into 'results'
		void getPointsInsideBox(const Vec3 &bmin, const Vec3 &bmax, std::vector<OctreePoint *> &results) {
			// If we're at a leaf node, just see if the current data point is inside
			// the query bounding box
			if(isLeafNode()) {
				if(data != NULL) {
					const Vec3 &p = data->getPosition();
					if(p.x > bmax.x || p.y > bmax.y || p.z > bmax.z) return;
					if(p.x < bmin.x || p.y < bmin.y || p.z < bmin.z) return;
					results.push_back(data);
				}
			} else {
				// We're at an interior node of the tree. We will check to see if
				// the query bounding box lies outside the octants of this node.
				for(int i = 0; i < 8; ++i) {
					// Compute the min/max corners of this child octant
					Vec3 cmax = children[i]->origin + children[i]->halfDimension;
					Vec3 cmin = children[i]->origin - children[i]->halfDimension;

					// If the query rectangle is outside the child's bounding box,
					// then continue
					if(cmax.x < bmin.x || cmax.y < bmin.y || cmax.z < bmin.z) continue;
					if(cmin.x > bmax.x || cmin.y > bmax.y || cmin.z > bmax.z) continue;

					// At this point, we've determined that this child is intersecting
					// the query bounding box
					children[i]->getPointsInsideBox(bmin, bmax, results);
				}
			}
		}

	};

}
#endif
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值