查找の平衡二叉树(AVL)
浙江大学数据结构与算法
1. 定义
平衡二叉树是一种搜索二叉树(或查找二叉树),其中每一个结点的左子树和右子树的高度差的绝对值都不大于1。
高度差定义为平衡因子(BF): B F ( T ) = h L − h R BF(T)=h_{L}-h_{R} BF(T)=hL−hR
2. AVL的调整
当插入元素后破坏了二叉平衡树的平衡时,需要对其进行调整。
视频中,对不平衡的元素起了特称:
引起不平衡的元素是麻烦结点,
被破坏平衡的元素是发现者,
2.1 AVL调整分类与策略
以下分类是从“麻烦结点”在“发现者”的方位为依据:
1. RR
当然,所谓的右边也不是绝对的:
2. LL
3. LR
【视频中没有给出这种旋转的具体分解步骤,但是我这里自己推理了一下:这种情况下类似于先把B和C左旋,然后再A,B,C做右旋?】
参考
这种情况调整如下:①将C的右孩子B提升为新的根结点;②将原来的根结点A降为C的右孩子;③各子树按大小关系连接(BL和AR不变,CL和CR分别调整为B的右子树和A的左子树)
4. RL
【视频中没有给出这种旋转的具体分解步骤,但是我这里自己推理了一下:这种情况下类似于先把B和C右旋,然后再A,B,C做左旋?】
参考
这种情况调整如下:①将C的右孩子B提升为新的根结点;②将原来的根结点A降为C的左孩子;③各子树按大小关系连接(AL和BR不变,CL和CR分别调整为A的右子树和B的左子树)
2.2 代码实现
代码实现见《大话数据结构版本》