机器学习笔记之线性分类——线性回归基本性质介绍与线性分类

机器学习笔记之线性分类——线性回归基本性质介绍与线性分类

引言

本系列将介绍线性分类

回顾:线性回归

线性回归(Linear Regression)是最基础的概率模型之一,它的概率模型表现格式如下:
f ( W , b ) = W T x + b f(\mathcal W,b) = \mathcal W^{T}x + b f(W,b)=WTx+b
其中, x x x样本数据提供的特征信息,是已知量;一般情况下,每一个样本 x ( i ) ( i = 1 , 2 , ⋯   , N x^{(i)}(i=1,2,\cdots,N x(i)(i=1,2,,N N N N表示样本数量 ) ) )是一个 p p p维向量:
x ( i ) = ( x 1 ( i ) , x 2 ( i ) , ⋯   , x p ( i ) ) p × 1 T x^{(i)} = (x_1^{(i)},x_2^{(i)},\cdots,x_p^{(i)})^{T}_{p \times 1} x(i)=(x1(i),x2(i),,xp(i))p×1T
同理, W \mathcal W W也是一个 p p p维向量:
W = ( w 1 , w 2 , ⋯   , w p ) p × 1 T \mathcal W = (w_1,w_2,\cdots,w_p)^{T}_{p \times 1} W=(w1,w2,,wp)p×1T
b b b被称为偏置(bias),具体作用是线性计算结果 W T x \mathcal W^{T}x WTx在特征空间中的平移信息,是一个标量

线性回归的处理相关任务的朴素思想是 模型拟合结果 f ( x ( i ) ; W , b ) f(\mathcal x^{(i)};W,b) f(x(i);W,b)和对应的真实标签 y ( i ) y^{(i)} y(i)之间的差距。因此,处理线性回归任务常用的策略工具是最小二乘法
一般情况下,为了简化推导过程,通常将 b b b合并到 W T x \mathcal W^{T}x WTx中。
L ( W , b ) = ∑ i = 1 N ∣ ∣ W T x ( i ) − y ( i ) ∣ ∣ 2 \mathcal L(\mathcal W,b) = \sum_{i=1}^N ||\mathcal W^{T}x^{(i)} - y^{(i)}||^2 L(W,b)=i=1N∣∣WTx(i)y(i)2

线性回归基本性质

即便线性回归模型结构简单,但仍包含3大基本性质:

  • 线性性质;
  • 特征空间的全局性;
  • 样本未执行加工;

相比于上述三大基本性质,可以通过违背上述一条或几条性质来实现其他的具体模型。

线性性质

线性回归的线性性质共包含3类:

  • 基于样本特征的线性性质
    观察线性回归概率模型中 样本向量 x ( i ) x^{(i)} x(i)与权重向量 W \mathcal W W之间的线性计算过程
    W T x ( i ) = ( w 1 , w 2 , ⋯   , w p ) ( x 1 ( i ) x 2 ( i ) ⋮ x p ( i ) ) = w 1 x 1 ( i ) + w 2 x 2 ( i ) + ⋯ + w p x p ( i ) ( x ( i ) ∈ X ) \mathcal W^{T}x^{(i)} = (w_1,w_2,\cdots,w_p)\begin{pmatrix}x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_p^{(i)} \end{pmatrix} = w_1x_1^{(i)} + w_2x_2^{(i)} + \cdots + w_px_p^{(i)}(x^{(i)} \in \mathcal X) WTx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值