引言
本系列将介绍线性分类。
回顾:线性回归
线性回归(Linear Regression)是最基础的概率模型之一,它的概率模型表现格式如下:
f ( W , b ) = W T x + b f(\mathcal W,b) = \mathcal W^{T}x + b f(W,b)=WTx+b
其中, x x x样本数据提供的特征信息,是已知量;一般情况下,每一个样本 x ( i ) ( i = 1 , 2 , ⋯ , N x^{(i)}(i=1,2,\cdots,N x(i)(i=1,2,⋯,N; N N N表示样本数量 ) ) )是一个 p p p维向量:
x ( i ) = ( x 1 ( i ) , x 2 ( i ) , ⋯ , x p ( i ) ) p × 1 T x^{(i)} = (x_1^{(i)},x_2^{(i)},\cdots,x_p^{(i)})^{T}_{p \times 1} x(i)=(x1(i),x2(i),⋯,xp(i))p×1T
同理, W \mathcal W W也是一个 p p p维向量:
W = ( w 1 , w 2 , ⋯ , w p ) p × 1 T \mathcal W = (w_1,w_2,\cdots,w_p)^{T}_{p \times 1} W=(w1,w2,⋯,wp)p×1T
b b b被称为偏置(bias),具体作用是线性计算结果 W T x \mathcal W^{T}x WTx在特征空间中的平移信息,是一个标量;
线性回归的处理相关任务的朴素思想是 模型拟合结果 f ( x ( i ) ; W , b ) f(\mathcal x^{(i)};W,b) f(x(i);W,b)和对应的真实标签 y ( i ) y^{(i)} y(i)之间的差距。因此,处理线性回归任务常用的策略工具是最小二乘法:
一般情况下,为了简化推导过程,通常将
b b b合并到
W T x \mathcal W^{T}x WTx中。
L ( W , b ) = ∑ i = 1 N ∣ ∣ W T x ( i ) − y ( i ) ∣ ∣ 2 \mathcal L(\mathcal W,b) = \sum_{i=1}^N ||\mathcal W^{T}x^{(i)} - y^{(i)}||^2 L(W,b)=i=1∑N∣∣WTx(i)−y(i)∣∣2
线性回归基本性质
即便线性回归模型结构简单,但仍包含3大基本性质:
- 线性性质;
- 特征空间的全局性;
- 样本未执行加工;
相比于上述三大基本性质,可以通过违背上述一条或几条性质来实现其他的具体模型。
线性性质
线性回归的线性性质共包含3类:
-
基于样本特征的线性性质
观察线性回归概率模型中 样本向量 x ( i ) x^{(i)} x(i)与权重向量 W \mathcal W W之间的线性计算过程:
W T x ( i ) = ( w 1 , w 2 , ⋯ , w p ) ( x 1 ( i ) x 2 ( i ) ⋮ x p ( i ) ) = w 1 x 1 ( i ) + w 2 x 2 ( i ) + ⋯ + w p x p ( i ) ( x ( i ) ∈ X ) \mathcal W^{T}x^{(i)} = (w_1,w_2,\cdots,w_p)\begin{pmatrix}x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_p^{(i)} \end{pmatrix} = w_1x_1^{(i)} + w_2x_2^{(i)} + \cdots + w_px_p^{(i)}(x^{(i)} \in \mathcal X) WTx