机器学习笔记之最优化理论与方法(一)最优化问题概述

引言

从本节开始,将对最优化理论与方法进行简单认识。

什么是最优化问题

无论是最优化理论还是最优化方法,讨论的对象都是最优化问题

关于最优化问题的一种简单描述:最优化问题本质上属于决策问题

  • 例如路径选择问题:确定达到目的地最佳路径的计量标准。其中问题的目标可能包含:路径距离最短、行驶费用最少等等。
  • 再例如车辆调度问题:通过制定行车路线,使车辆再满足一定约束条件下,有序通过一系列装货点和卸货点,以达到如最短路程、耗时最少、费用最小等目标

也就是说,我们需要从若干个可执行策略中挑出一个/若干个策略,从而使待处理问题的目标达到最优

具体的说,一个最优化问题会包含如下三个部分:

  • 决策变量:在执行策略过程中需要做决定的信息。例如车辆调度问题中的路径选择
  • 目标函数:在制定策略之前,需要明确要优化的目标。而目标函数是对目标的计量方式进行表达。目标函数可能不止一个,不同角度的目标可能对应不同的目标函数。例如上述车辆调度问题中的最短路程、耗时最小、费用最小。它们都可以作为目标,从而制定相应的目标函数
  • 约束条件:由可行策略组成的集合,通常使用等式/不等式进行描述。

最优化问题的基本形式

关于最优化问题的数学符号表达如下:
{ min ⁡  or  max ⁡ f ( x ) x = ( x 1 , ⋯   , x p ) T s.t.  { g i ( x ) ≤ 0 i = 1 , 2 , ⋯   , m h j ( x ) = 0 j = 1 , 2 , ⋯   , l x ∈ X \begin{cases} \begin{aligned} & \min \text{ or } \max f(x) \quad x = (x_1,\cdots,x_p)^T \\ & \text{s.t. } \begin{cases} g_i(x) \leq 0 \quad i=1,2,\cdots,m \\ h_j(x) = 0 \quad j = 1,2,\cdots,l \\ \end{cases} \\ & x \in \mathcal X \end{aligned} \end{cases} min or maxf(x)x=(x1,,xp)Ts.t. { gi(x)0i=1,2,,mhj(x)=0j=1,2,,lxX

  • 其中 x i ( i = 1 , 2 , ⋯   , p ) x_i(i=1,2,\cdots,p) xi(i=1,2,,p)决策变量;而 x x x则表示由若干决策变量组成的决策向量

  • 目标函数作为目标的计量方式,它必然与决策向量相关。它具体描述为关于决策向量的一个函数
    也就是说,一旦得到一个/一组确定的决策 x x x,必然会得到目标相应的计量结果 f ( x ) f(x) f(x)
    f ( x ) = f ( x 1 , x 2 , ⋯   , x p ) f(x) = f(x_1,x_2,\cdots,x_p) f(x)=f(x1,x2,,xp)
    min ⁡ f ( x ) \min f(x) minf(x) max ⁡ f ( x ) \max f(x) maxf(x)分别表示对目标函数最小化或最大化,根据实际情况而定。

  • g i ( x ) g_i(x) gi(x)同样是关于决策向量 x x x的一个函数。在执行决策的过程中,可能存在相关资源的限制。而 g i ( x ) ≤ 0 g_i(x) \leq 0 gi(x)0则是一种不等式相关的条件限制,称作不等式约束

    同理, h j ( x ) = 0 h_j(x) = 0 hj(x)=0则是一种等式相关的条件限制,被称作等式约束
    这里的 i , j i,j i,j描述不等式/等式约束的编号,对应的 m , l m,l m,l描述不等式/等式约束的数量。

  • x ∈ X x \in \mathcal X xX则表示决策向量 x x x的定义域空间 X \mathcal X X。通常情况下,对 X \mathcal X X的描述比较简单、宽泛。例如: X ∈ R p \mathcal X \in \mathbb R^p XRp,即 x x x是一个实数向量 X ∈ R + p \mathcal X \in \mathbb R_+^p XR+p,即 x x x是一个非负的实数向量 X ∈ Z p \mathcal X \in \mathcal Z^p XZp,即 x x x是一个整数向量等等。根据具体的实际问题具体设置。

虽然 X \mathcal X X描述了 x x x基本性质,但并不代表 X \mathcal X X内的所有值 x x x都可以取到。观察如下集合:
S = { x ∈ X ∣ g i ( x ) ≤ 0 , i = 1 , 2 , ⋯   , m ; h j ( x ) = 0 , j = 1 , 2 , ⋯   , l } \mathcal S = \{x \in \mathcal X \mid g_i(x) \leq 0,i=1,2,\cdots,m;h_j(x) = 0,j=1,2,\cdots,l\} S={ xXgi(x)0,i=1,2,,m;hj(x)=0,j=1,2,,l}
这个集合 S \mathcal S S同样是描述决策向量 x x x的集合,但不同于 X \mathcal X X的是,它被称作上述优化问题的可行域。也就是说,决策向量 x x x可在可行域 S \mathcal S S内进行取值。而 x ∈ S x \in \mathcal S

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静的喝酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值