65矩阵中的路径

题目描述

请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。 例如
在这里插入图片描述
矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。

思路分析

基础思想是岛问题中的传染解法。(很形象,一传四,中的人继续传)

  1. 用一个数组作为标志数组,记录路径是否走过此处,1为走过
  2. 从[0][0]位置开始遍历
  3. 题目中给的是一维数组,先做转化,确定二维转成一维数组此时的位置
  4. 递归终止即返回false的条件:下标越界;此位置已经走过;当前位置的值和字符串要求不符
  5. 递归成功即返回true的条件:字符串的索引到达最后一位
  6. 不断搜索周围四个格子是否符合要求,只要有一个符合就继续找这个的周围四个格子
  7. 此时,四个格子都不符合要求,将此处的标志置0,换个路线走

代码实现

public static boolean hasPath(char[] matrix, int rows, int cols, char[] str) {
    if (matrix == null) {
        return false;
    }

    int[][] dpMatrix = new int[rows][cols];
    for (int i = 0; i < rows; i++) {
        for (int j = 0; j < cols; j++) {
            if (process(matrix, rows, cols, i, j, str, 0, dpMatrix)) {
                return true;
            }
        }
    }
    return false;
}

public static boolean process(char[] matrix, int rows, int cols, int row, int col, char[] str, int index, int[][] dp) {

    int cur = cols * row + col;
    if (row >= rows || col >= cols || row < 0 || col < 0 || dp[row][col] == 1 || matrix[cur] != str[index]) {
        return false;
    }
    if (index == str.length - 1) {
        return true;
    }
    //没走过
    //开始将走过的位置置1
    dp[row][col] = 1;
    if (process(matrix, rows, cols, row + 1, col, str, index + 1, dp) ||
            process(matrix, rows, cols, row - 1, col, str, index + 1, dp) ||
            process(matrix, rows, cols, row, col + 1, str, index + 1, dp) ||
            process(matrix, rows, cols, row, col - 1, str, index + 1, dp)) {
        return true;
    }
    //走不通,还原
    dp[row][col] = 0;
    return false;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值