什么是梯度裁剪

本文翻译自What is Gradient Clipping?,如有不妥私信联系删除。

什么是梯度裁剪

——解决梯度爆炸的一种简单高效的方法

  循环神经网络(RNN)通过利用过去输入的隐藏状态(这些状态存储了数据的信息)得以在序贯数据上表现的非常好:t时刻隐藏状态的取值不仅取决于t时刻的输入,而和t时刻之前的取值相关。这种强大的架构在训练时却存在两个问题:梯度爆炸和梯度消失。本文将介绍梯度裁剪这一处理梯度爆炸问题的有效方法。

梯度爆炸和梯度消失背后的直观原因

  梯度爆炸是指在模型训练过程中梯度会变得太大而使得模型不稳定的问题;与之相似,梯度消失指模型训练过程中梯度太小使得训练过程无法继续的现象。两者阻止了神经网络参数的更新,以致不能从训练数据中得到稳定的模型。下面将以不严谨然而充分的讨论来是我们得到梯度爆炸哦和梯度消失的直观原因。
  通过bp训练一个RNN时,意味着我们通过在每个时间段(每一步)都复制一份网络来展开RNN网络,并将展开后的网络视为一个多层前馈神经网络,显然层数与时间步数相同。然后考虑到权重共享,我们在展开的网络上进行bp:

这里的W指递归(循环?)的的权重矩阵。可以看出损失函数的梯度由 W T \mathbf{W}^T WT的n个拷贝相乘构成,n指时间步数即该前馈神经网络的层数。而矩阵的多次相乘正是导致梯度爆炸/消失的罪魁祸首。
举一个简单的例子, a ≠ 1 a\neq 1 a=1 a n a^n an指数变化。考虑 n = 30 n=30 n=30,则有 1. 1 n ≈ 17.45 1.1^n\approx 17.45 1.1n17.45以及 0. 9 n ≈ 0.042 0.9^n\approx 0.042 0.9n0.042,这里取n为30是考虑了实际情况:在NLP(自然语言处理)中,一个包含30个字词的句子是十分常见的,此外在许多分析中取30天的数据也十分常见。这个例子与 ( W T ) n (\mathbf{W}^T)^n (WT)n的情形是类似的——最容易理解的方式是考虑 W T \mathbf{W}^T WT是可对角化的,则将其对角化后做幂运算可以清晰看出与上述例子的一致性。
  如果想查看严密的论证,推荐阅读文献[2]

梯度裁剪

  梯度裁剪是解决梯度爆炸的一种技术,其出发点是非常简明的:如果梯度变得非常大,那么我们就调节它使其保持较小的状态。精确的说,如果 ∥ g ∥ ≥ c \parallel{\mathbf{g}}\parallel \geq c gc,则

g ← c ⋅ g / ∥ g ∥ \mathbf{g}\leftarrow c \cdot \mathbf{g}/\parallel \mathbf{g}\parallel gcg/g

此处的c指超参数, g \mathbf{g} g指梯度, ∥ g ∥ \parallel{\mathbf{g}}\parallel g为梯度的范数, g / ∥ g ∥ \mathbf{g}/\parallel \mathbf{g}\parallel g/g必然是个单位矢量,因此在进行调节后新的梯度范数必然等于c,注意到如果 ∥ g ∥ ≤ c \parallel{\mathbf{g}}\parallel \leq c gc则不需要进行调节。
  梯度裁剪确保了梯度矢量的最大范数(本文中规定为c)。即使在模型的损失函数不规则时,这一技巧也有助于梯度下降保持合理的行为。下面的图片展示了损失函数的陡崖。不采用裁剪,参数将会沿着梯度下降方向剧烈变化,导致其离开了最小值范围;而使用裁剪后参数变化将被限制在一个合理范围内,避免了上面的情况。
在这里插入图片描述

两大框架中的实现

常见问题

如何选择超参数c

  我们可以先进行数轮迭代,然后查看梯度范数的统计数据。以统计数据的均值作为c值的初始值是较为合理的初步尝试。

梯度裁剪能否用于训练RNN之外的神经网络

  梯度裁剪可以应用于所有神经网络的训练中——任何可能发生梯度爆炸的训练过程都适用。

更多阅读

  1. 文献【1】的10.11
  2. 文献【3】介绍了一种新的平滑条件,为梯度裁剪的有效性提供了理论解释。

参考

[1] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning (2016), MIT Press.
[2] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training Recurrent Neural Networks (2013), ICML 2013.
[3] J. Zhang, T. He, S. Sra, and A. Jadbabaie. Why gradient clipping accelerates training: A theoretical justification for adaptivity (2020), ICLR 2020.

TensorFlow中的梯度裁剪是一种常用的技术,用于限制学习算法中的梯度值大小,以避免梯度爆炸或消失的问题。 在深度学习中,通过反向传播算法计算梯度,并使用其来更新模型参数。然而,梯度可能会变得非常大,导致参数更新过大,这称为梯度爆炸。另一方面,梯度也可能变得非常小,导致参数更新缓慢,这称为梯度消失。这两个问题都会影响模型的训练和性能。 为了解决这些问题,可以使用梯度裁剪梯度裁剪通过设置一个阈值来限制梯度的大小,如果梯度的范数超过了这个阈值,就对梯度进行缩放,从而将其限制在合理的范围内。梯度裁剪可以在反向传播之前或之后应用,具体取决于具体的实现方式。 在TensorFlow中,可以使用tf.clip_by_value或tf.clip_by_norm等函数来实现梯度裁剪。tf.clip_by_value函数通过限制梯度的数值范围来进行裁剪。tf.clip_by_norm函数将梯度视为向量,并通过将其缩放到指定的范数来进行裁剪。 例如,可以使用以下代码在TensorFlow中对模型的梯度进行裁剪: ``` optimizer = tf.train.GradientDescentOptimizer(learning_rate) gradients, variables = zip(*optimizer.compute_gradients(loss)) clipped_gradients, _ = tf.clip_by_value(gradients, -threshold, threshold) train_op = optimizer.apply_gradients(zip(clipped_gradients, variables)) ``` 这里,首先使用optimizer.compute_gradients函数计算梯度和变量,然后使用tf.clip_by_value函数对梯度进行裁剪,最后使用optimizer.apply_gradients函数将裁剪后的梯度应用到变量上。 梯度裁剪是一种常用的技术,可以有效地处理梯度爆炸和梯度消失问题,提高模型训练的稳定性和收敛性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值