知识图谱x推荐《A Survey on Knowledge Graph-Based Recommender Systems》

2020 IEEE Transactions on Knowledge and Data Engineering(TKDE)
pdf下载

摘要

该文对在推荐系统中引入知识图作为辅助信息的相关工作做出了总结,并将其分为三类,即embedding-based方法、connection-based方法和propagation-based方法。同时,根据这些方法的特点,对每一类进行了细分。此外,该文还通过研究如何利用知识图谱进行准确和可解释的推荐,对所提出的算法进行了研究。最后,总结了一些相关数据集并提出了该领域的几个潜在研究方向。

前言

  1. 推荐系统存在的问题
    推荐算法是推荐系统的核心元素,可分为基于协同过滤(CF)的推荐系统、基于内容的推荐系统和混合推荐系统。基于CF的推荐根据交互数据中users或items的相似性来建立user偏好模型,而基于内容的推荐则利用item的内容特征。基于CF的推荐系统不需要在基于内容的推荐系统中进行特征提取,但存在数据稀疏和冷启动问题。所以,人们提出了混合推荐系统来统一交互层的相似度和内容层的相似度。
  2. 推荐系统引入知识图谱的好处
    (1). 通过将users和user侧信息集成到KG中,更准确地捕捉到users和items之间的关系以及user的偏好。
    (2). 基于KG的推荐系统的好处是推荐结果的可解释性。
  3. 该文的贡献
    (1). 将现有基于知识图谱的推荐系统相关工作分为三类:
    分类
    (2). 总结了相关工作如何利用KG进行解释性推荐以及其常用的技术。
    (3). 按照不同的应用场景对现有工作进行分类并收集这些中评估的数据集。

背景

该部分主要介绍了基于KG的推荐系统的基本知识以及相关工作,涉及相关知识及概念请读者自行了解。

  • Recommender Systems
  • Heterogeneous Information Network (HIN)
  • Knowledge Graph (KG)
  • Item Knowledge Graph
  • User-Item Knowledge Graph
  • Meta-path
  • Meta-graph
  • Knowledge Graph Embedding (KGE)
  • H-hop Neighbor
  • Entity Triplet Set

后续相关符号及其描述见下图。
符号

基于KG的推荐系统方法总结

下图为一些相关论文利用KG进行推荐的方法。
论文集

缩写含义缩写含义
Emb.embedding-based 方法RU.user的细化
Conn.connection-based 方法RI.item的细化
Prop.propagation-based 方法RUI.user和item的细化
TSL.two-stage learning 方法*推荐模型是可解释的
JL.joint learning 方法KG Embed.KGE方法
MTL.multi-task learning 方法IKGitem KG
MSB.基于 meta-structure的方法UIKGuser-item KG
PEB.基于path-embedding的方法该模型没有采用KGE方法,或者该模型没有解决此类问题

1. Embedding-based 方法

此类研究包含两个基本模块,一个是graph embedding 模块,用于学习KG中实体和关系的表示;另一个是recommendation 模块,用于估计user u i u_{i} ui 对具有学习特征的item v j v_{j} vj 的偏好。
在这里插入图片描述

(1) Two-stage learning

Two-stage learning 训练步骤:

  • 用KGE算法学习实体和关系的表示
  • 将经过预训练的图相关embeddings与其他user特征和item特征一起输入推荐模块中进行预测

相关方法介绍:

  • DKN 首先挖掘新闻之间的知识层次关系,结合Kim-CNN所学句子的文本embedding 和通过TransD在新闻内容中实体的知识级embedding 对新闻建模,通过使用注意力机制聚合历史点击新闻embedding,最后通过MLP计算user对候选新闻的喜好。
  • KSR 该方法用于序列推荐,利用GRU网络捕获用户的顺序偏好,利用KV-MV模块知识库信息对用户的属性级偏好进行建模,将 u i t u_{i}^{t} uit v j v_{j} vj转换为同一维度后,可以通过内积来估计用户对项目的偏好。
  • KTGAN 提出了一个基于GAN的推荐模型。首先,通过在电影KG上引入Metapath2Vec模型,并在电影的属性上使用带有Word2Vec模型的tag embedding来学习电影 v j v_{j} vj的knowledge embedding;然后学习生成器G和鉴别器D来改进users和items的初始表示,通过G的得分函数对电影进行排名,为目标user生成推荐。
  • BEM 分别使用TransE模型和GraphSAGE模型从item-attribute level knowledge和behavior graph学习初始embedding;设计了贝叶斯生成模型互相细化这两种表示,并在每个图种保留项目结构信息;在behavior graph中找到最接近的items来生成推荐。

Two-stage learning 优缺点:

  • Two-stage learning易于实现,KG embedding通常被视为后续推荐模块的额外特征。
  • KG embedding可以在没有交互数据的情况下学习,因此,大规模交互数据集不会增加计算复杂性。
  • KG通常是稳定的,一旦学习到embedding,就不需要频繁地更新它们。
  • KGE模型优化的实体embedding更适合于图内应用,如KG补全。
  • 由于KGE模块和推荐模块是松散耦合的,所学习的embeddings可能不适合推荐任务

(2) Joint Learning

以端到端的训练方式联合学习图embedding模块和推荐模块,推荐模块可以引导图embedding模块中的特征学习过程。

相关方法介绍:

  • CKE 使用TransR对item属性级特征进行编码,通过自动编码器提取文本特征和视觉特征,将这三个特征学习模块和推荐模块一起构成目标函数。
  • SHINE 利用自动编码器模型分别从user之间的情感网络、user关系的社交网络和user属性级知识的文件网络学习用户特征。
  • CFKG 采用TransE对图进行编码,并通过hinge loss来学习实体和关系的embedding。推荐模块根据user和item的欧氏距离对候选item进行排名,其中欧式距离是通过“buy”关系得到的。

Joint Learning 优缺点:
Joint Learning方法可以使用KG结构来规范推荐过程。但是,需要微调不同目标函数的组合。

(3) Multi-task Learning

因为user-item二分图中的item及其再KG中的关联实体可能共享相似的结构,所以,items和实体之间的low-level feature转移有助于促进推荐系统的效果提升。

相关方法介绍:

  • MKR 由推荐模块和KGE模块组成,他们通过cross&compress单元连接共享知识。
  • KTUP 采用TransH学习实体和关系的embedding,和推荐模块共同训练

Multi-task Learning 优缺点:
有助于防止推荐系统过度拟合,提高模型的泛化能力。但是,它也需要将不同的任务集成在一个框架下。

小结

在这里插入图片描述

2. Connection-based方法

利用user-item KG挖掘图中的实体之间的关系

  • 基于Meta-structure的方法。利用meta-path和meta-graph计算实体之间的相似度,预测users的兴趣
  • 基于path-embedding的方法。将user-item pairs和item-item pairs之间的连接模式编码成向量,整合到推荐框架中。

面临挑战:

  • 如何为不用的任务设计适当的meta-paths
  • 如何为实体之间的连接模式建模

(1). 基于Meta-structure的方法

基于元路径具有高度相似性的实体在隐空间应该很接近,所以利用不同meta-path路径中实体的连接相似性来图正则化约束user和item的表示。

三种实体相似性:
User-User相似性
Item-Item相似性
User-Item相似性

相关方法介绍:

  • Hete-MF 只提取了item-item相似性
  • Hete-CF 提取了user-user、item-item、user-item相似性
  • HeteRec 利用实体相似性来预测user对unrated items的兴趣,局限性是每个路径的学习权重对于所有user都是相同的。
  • HeteRec-p 引入聚类算法对user过去的行为进行分类,然后生成个性化的推荐。
  • SemRec 通过相似users评分的加权综合来预测unrated items的偏好
  • FMG 通过meta-graph来捕捉异构图中实体之间的关系

基于Meta-structure方法的优缺点:
这种方法的推荐结果是可解释的;但是,选择meta-path或meta-graph需要一定的领域知识,meta-structures可能因不同数据集而存在差异。

(2). 基于Path-embedding的方法

通过学习连接user-item KG中的user-item pairs或item-item KG种的item pairs的路径的显式embedding,来直接对user-item或item-item关系建模。

相关方法介绍:

  • MCRec 用CNN学习每个路径实例的embedding,对计算过的meta-path embedding进行加权平均,得到user和item之间的交互embedding;另外user embedding和item embedding通过交互embedding进行更新。但仍需手动定义meta-path的类型和数量。
  • RKGE 自动挖掘user和item之间的路径关系
  • KPRN 采用实体embedding和关系embedding两种方法构造路径序列
  • RuleRec 将外部items中的相关item的连接模式转换为规则特征
  • PGPR 使用强化学习自动的搜索user-item pairs之间的合理路径

基于Path-embedding的方法的优缺点:
大多数模型可以自动挖掘连接模式,无需预先定义meta-structures。但是如果路径数过大会影响模型的性能。

小结

在这里插入图片描述

3. Propagation-based方法

通过聚集KG中multi-hop邻居的embedding来细化实体表示,利用user和潜在item丰富表示来预测user偏好。

面临挑战:

  • 如何给不同的邻居分配适当的权重
  • 如何在不同的关系边上传播消息
  • 如何提高模型的可扩展性

(1). user表示的细化

基于user的交互历史来改进user表示,在item KG中逐层向外传播user的偏好,即沿着KG种的路径来传播用户历史兴趣偏好。学习user表示的过程为:
在这里插入图片描述
相关方法介绍:

  • RippleNet 通过训练关系矩阵来为图中的邻域赋值,偏好矩阵难以训练
  • AKUPM 采用TransR对实体进行建模,应用自注意力机制为聚合过程中的实体分配权重,可以更好的捕捉user兴趣

user表示的细化的优缺点:

KG中边的权重是明确的,可以选择连接候选item和交互item的显著路径,并作为推荐结果的解释。但只细化了user的表示

(2). item表示的细化

通过item KG中item的multi-hop邻居来学习候选item的高阶表示,在内向传播过程中,采用了图注意力机制,不同邻居的权重是用户特定和关系特定的。传播过程为:
在这里插入图片描述
相关方法介绍:

  • KGCN 每个邻居的权重是user特定的。容易出现过拟合,因为user-item交互是整个框架的唯一监督信号
  • KGCN-LS 再KGCN模型上增加了label smoothness正则化

user表示的细化的优缺点:
只细化了item的表示

(3). user和item表示的细化

user embedding和item embedding可以在传播过程中用它们相应的邻居来细化

相关方法介绍:

  • KGAT 通过embedding传播直接模拟user和item之间的高阶关系。
  • KNI 利用增强的user邻域表示和item邻域表示来进行偏好估计
  • IntentGC 将原来的user-item KG转换成两个user-user和item-item多关系图。
    以上方法可能会引入不相关的邻居
  • AKGE 通过在这个user-item pair的子图中传播信息来学习user和候选item的增强表示

user和item表示的细化的优缺点:
图中的关系越多,会带来不相关的实体,可能会在聚合过程中误导用户的偏好。

小结

基于传播的方法随着图形的变大,模型很难收敛,需要更快的图卷积运算;在每一层随机采样的方法会导致信息的缺失。
在这里插入图片描述

总结

优点缺点
embedding-based编码容易
适用大多数场景
不能充分挖掘KG中的信息
不适合解释推荐
connection-based可解释的推荐定义元路径或元图比较繁琐
不同场景元路径不同
大规模数据下计算复杂度高
数据稀疏性问题容易导致路径质量、数量差
propagation-based可解释的推荐
更充分的挖掘KG中的信息
聚合和更新部分需要仔细设计
大规模数据下计算复杂度高

常用技巧:

  • Attention mechanism on relation embedding
  • Defining meta-path/meta-graph
  • Attention mechanism on path embedding
  • Reinforcement learning in User-Item KG
  • Extracting edge weight

基于Trans系列的KGE方法:

  • TransE 简单有效,但不适用于处理多对多的关系
  • TransH 可处理多对多的关系
  • TransR 实体具有不同方面, 而不同的关系侧重于不同的方面
  • TransD 映射关系应该由实体和关系共同决定

数据集

在实际应用中,通常从大数据集中选取一个子集,过滤掉记录较少的user和item,以获得更高质量的数据。
在这里插入图片描述

未来研究方向

  • 动态推荐 利用动态图网络捕获user动态偏好
  • 多任务学习 联合训练KG补全模块和推荐模块
  • 跨域推荐 通过迁移学习技术以及在图中加入不同类型的user和item侧信息来提高跨域推荐的性能
  • 知识增强的语言表示 将外部知识集成到语言表示模型中,使知识表示和文本表示相互细化。

注意: 该论文提及的相关方法将在后续文章中详细介绍,感兴趣的读者可以持续关注。

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
### 回答1: 知识图谱推荐系统调查 知识图谱推荐系统是一种基于知识图谱推荐系统,它利用知识图谱中的实体、属性和关系来推荐物品。该系统可以通过分析用户的兴趣、行为和偏好来生成个性化推荐知识图谱推荐系统可以应用于各种领域,如电子商务、社交网络和文本推荐等。目前,该领域的研究重点包括知识图谱的构建、推荐算法的设计和评估方法的研究等。 ### 回答2: 知识图谱推荐系统是一种依靠知识图谱构建的推荐系统,它不仅考虑用户的历史行为和个人喜好,还考虑了物品的属性、关系和语义信息。近年来,知识图谱推荐系统在学术和工业界都受到了广泛关注和研究。 在知识图谱推荐系统中,建立知识图谱是关键步骤之一。知识图谱通常由实体和关系构成,实体可以是物品或用户,关系则可以是它们之间的交互行为、属性描述等。实体和关系之间的语义信息可以通过数据挖掘和自然语言处理等技术自动构建,也可以手工添加和维护。知识图谱的构建,需要结合业务场景和领域知识,通过不断迭代和优化,以获得更好的推荐效果和用户满意度。 知识图谱推荐系统的核心算法是基于知识图谱推荐算法,主要包括基于图的推荐算法、基于规则的推荐算法、基于深度学习的推荐算法等。这些算法的基本思想是通过利用知识图谱的结构信息和语义信息,对用户和物品进行匹配和推荐,以提高推荐的准确性和个性化水平。 知识图谱推荐系统的应用场景非常广泛,包括电商推荐、新闻推荐、社交网络推荐等。知识图谱推荐系统可以更好地利用物品之间的关联和用户之间的交互,同时可以结合人类的知识和专业判断,提高推荐的可解释性和可靠性。 未来,随着人工智能和大数据技术的不断发展,知识图谱推荐系统将会得到更广泛的应用和深入的研究,同时也面临着更多的挑战,如数据隐私和安全问题、知识图谱的动态维护和更新问题等。要开展更深入的研究和解决这些问题,需要结合各种学科和技术手段,以推动知识图谱推荐系统的发展和应用。 ### 回答3: 知识图谱是一种用来描述各种实体以及它们之间关系的图形化表示工具,近年来,知识图谱被广泛应用于推荐系统中。知识图谱推荐系统推荐过程中利用知识图谱中的实体和关系信息,可以有效地改进推荐结果的质量和效率。 针对知识图谱推荐系统的开发和应用,近年来已经涌现出了各种基于知识图谱推荐算法和框架。例如,基于图注意力机制的知识图谱推荐系统可以通过考虑实体之间的直接和间接关系,生成更准确的推荐结果。还有一些基于深度学习的知识图谱推荐算法,如基于RNN的节点属性与图结构编码的方案,已经被证明在准确性和效率方面都有很高的表现。 此外,还有许多研究集中于知识图谱推荐系统的实际应用。例如,在电影推荐领域,研究表明基于知识图谱推荐系统能够更准确地预测用户对电影的评价和偏好。在旅游推荐领域,基于知识图谱推荐系统能够根据用户的兴趣和偏好,为用户提供更加个性化的旅游线路规划。 然而,知识图谱推荐系统仍然面临着许多挑战和问题。例如,在实践中,如何有效地构建和管理知识图谱、如何应对数据稀疏性和冷启动等问题,都需要进一步研究和解决。此外,在知识图谱推荐系统中,如何解释预测结果以及保障数据的隐私性等问题也需要考虑。 总之,基于知识图谱推荐系统是一个具有广泛研究和应用前景的领域。未来的工作应该更加注重实际应用,并进一步解决相关的技术问题,以提高系统的性能和用户体验。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clock966

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值