06.sqoop教程

大数据技术之Sqoop

第1章 Sqoop简介

Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql…)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

Sqoop项目开始于2009年,最早是作为Hadoop的一个第三方模块存在,后来为了让使用者能够快速部署,也为了让开发人员能够更快速的迭代开发,Sqoop独立成为一个Apache项目。

Sqoop2的最新版本是1.99.7。请注意,2与1不兼容,且特征不完整,它并不打算用于生产部署。

第2章 Sqoop原理

将导入或导出命令翻译成mapreduce程序来实现。

在翻译出的mapreduce中主要是对inputformat和outputformat进行定制。

第3章 Sqoop安装

安装Sqoop的前提是已经具备Java和Hadoop的环境。

3.1 下载并解压

\1) 下载地址:http://mirrors.hust.edu.cn/apache/sqoop/1.4.6/

\2) 上传安装包sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz到/opt/software中

\3) 解压sqoop安装包到指定目录,如:

[xikuang@hadoop102 software]$ tar -zxvf sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz -C /opt/module/

3.2 修改配置文件

Sqoop的配置文件与大多数大数据框架类似,在sqoop根目录下的conf目录中。

1) 重命名配置文件

[xikuang@hadoop102 software]$ cd /opt/module/
[xikuang@hadoop102 module]$ mv sqoop-1.4.7.bin__hadoop-2.6.0/ sqoop
[xikuang@hadoop102 conf]$ mv sqoop-env-template.sh sqoop-env.sh

2) 修改配置文件

sqoop-env.sh

[xikuang@hadoop102 conf]$ vim sqoop-env.sh
export HADOOP_COMMON_HOME=/opt/module/hadoop-3.1.3
export HADOOP_MAPRED_HOME=/opt/module/hadoop-3.1.3
export HIVE_HOME=/opt/module/hive
export ZOOKEEPER_HOME=/opt/module/zookeeper-3.4.10
export ZOOCFGDIR=/opt/module/zookeeper-3.4.10
export HBASE_HOME=/opt/module/hbase

3.3 拷贝JDBC驱动

拷贝jdbc驱动到sqoop的lib目录下,如:

[xikuang@hadoop102 sqoop]$ cd /opt/software/
[xikuang@hadoop102 software]$ cp mysql-connector-java-5.1.37-bin.jar /opt/module/sqoop/lib/

3.4 验证Sqoop

我们可以通过某一个command来验证sqoop配置是否正确:

$ bin/sqoop help

出现一些Warning警告(警告信息已省略),并伴随着帮助命令的输出:

[xikuang@hadoop102 sqoop]$ bin/sqoop help
Warning: /opt/module/sqoop/bin/../../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /opt/module/sqoop/bin/../../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
2021-12-24 13:50:35,731 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7
usage: sqoop COMMAND [ARGS]

Available commands:
  codegen            Generate code to interact with database records
  create-hive-table  Import a table definition into Hive
  eval               Evaluate a SQL statement and display the results
  export             Export an HDFS directory to a database table
  help               List available commands
  import             Import a table from a database to HDFS
  import-all-tables  Import tables from a database to HDFS
  import-mainframe   Import datasets from a mainframe server to HDFS
  job                Work with saved jobs
  list-databases     List available databases on a server
  list-tables        List available tables in a database
  merge              Merge results of incremental imports
  metastore          Run a standalone Sqoop metastore
  version            Display version information

See 'sqoop help COMMAND' for information on a specific command.

3.5 测试Sqoop是否能够成功连接数据库

$ bin/sqoop list-databases --connect jdbc:mysql://hadoop102:3306/ --username root --password 000000

出现如下输出:

[xikuang@hadoop102 sqoop]$ bin/sqoop list-databases --connect jdbc:mysql://hadoop102:3306/ --username root --password 000000
Warning: /opt/module/sqoop/bin/../../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /opt/module/sqoop/bin/../../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
2021-12-24 13:52:34,771 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7
2021-12-24 13:52:34,805 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
2021-12-24 13:52:34,976 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
information_schema
metastore
mysql
performance_schema
sys

第4章 Sqoop的简单使用案例

4.1 导入数据

在Sqoop中,“导入”概念指:从非大数据集群(RDBMS)向大数据集群(HDFS,HIVE,HBASE)中传输数据,叫做:导入,即使用import关键字。

4.1.1 RDBMS到HDFS

\1) 确定Mysql服务开启正常

\2) 在Mysql中新建一张表并插入一些数据

$ mysql -uroot -p000000

mysql> create database company;

mysql> create table company.staff(id int(4) primary key not null auto_increment, name varchar(255), sex varchar(255));

mysql> insert into company.staff(name, sex) values(‘Thomas’, ‘Male’);

mysql> insert into company.staff(name, sex) values(‘Catalina’, ‘FeMale’);

\3) 导入数据

(1**)全部导入**

bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--table staff \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t"

(2**)查询导入**

bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--query 'select name,sex from staff where id >=1 and $CONDITIONS'

提示:must contain ‘$CONDITIONS’ in WHERE clause.

如果query后使用的是双引号,则$CONDITIONS前必须加转移符,防止shell识别为自己的变量。

(3**)导入指定列**

bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--columns id,sex \
--table staff

提示:columns中如果涉及到多列,用逗号分隔,分隔时不要添加空格

(4**)使用sqoop关键字筛选查询导入数据**

bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--target-dir /user/company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--table staff \
--where "id=1"

4.1.2 RDBMS到Hive

bin/sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--table staff \
--num-mappers 1 \
--hive-import \
--fields-terminated-by "\t" \
--hive-overwrite \
--hive-table staff_hive

提示:该过程分为两步,第一步将数据导入到HDFS,第二步将导入到HDFS的数据迁移到Hive仓库,第一步默认的临时目录是/user/xikuang/表名

sqoop里面的数据导入到hive里面报错

2021-12-25 19:24:46,771 ERROR hive.HiveConfig: Could not load org.apache.hadoop.hive.conf.HiveConf. Make sure HIVE_CONF_DIR is set correctly.
2021-12-25 19:24:46,772 ERROR tool.ImportTool: Import failed: java.io.IOException: java.lang.ClassNotFoundException: org.apache.hadoop.hive.conf.HiveConf
        at org.apache.sqoop.hive.HiveConfig.getHiveConf(HiveConfig.java:50)
        at org.apache.sqoop.hive.HiveImport.getHiveArgs(HiveImport.java:392)
        at org.apache.sqoop.hive.HiveImport.executeExternalHiveScript(HiveImport.java:379)
        at org.apache.sqoop.hive.HiveImport.executeScript(HiveImport.java:337)
        at org.apache.sqoop.hive.HiveImport.importTable(HiveImport.java:241)
        at org.apache.sqoop.tool.ImportTool.importTable(ImportTool.java:537)
        at org.apache.sqoop.tool.ImportTool.run(ImportTool.java:628)
        at org.apache.sqoop.Sqoop.run(Sqoop.java:147)
        at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:76)
        at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:183)
        at org.apache.sqoop.Sqoop.runTool(Sqoop.java:234)
        at org.apache.sqoop.Sqoop.runTool(Sqoop.java:243)
        at org.apache.sqoop.Sqoop.main(Sqoop.java:252)
Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.hive.conf.HiveConf
        at java.net.URLClassLoader.findClass(URLClassLoader.java:382)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
        at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
        at java.lang.Class.forName0(Native Method)
        at java.lang.Class.forName(Class.java:264)
        at org.apache.sqoop.hive.HiveConfig.getHiveConf(HiveConfig.java:44)
        ... 12 more

解决方案:

Sqoop导入mysql表中的数据到hive,出现如下错误:

ERROR hive.HiveConfig: Could not load org.apache.hadoop.hive.conf.HiveConf. Make sure HIVE_CONF_DIR is set correctly.

解决方法:

[xikuang@hadoop102 sqoop]$ sudo vim /etc/profile

加入 
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HIVE_HOME/lib/*

[xikuang@hadoop102 sqoop]$ source /etc/profile

再同步分发配置下环境变量
[xikuang@hadoop102 sqoop]$ sudo xsync /etc/profile
hadoop103.hadoop104上配置生效

4.2、导出数据

在Sqoop中,“导出”概念指:从大数据集群(HDFS,HIVE,HBASE)向非大数据集群(RDBMS)中传输数据,叫做:导出,即使用export关键字。

4.2.1 HIVE/HDFS到RDBMS

bin/sqoop export \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--table staff2 \
--num-mappers 1 \
--export-dir /user/hive/warehouse/staff_hive \
--input-fields-terminated-by "\t"

提示:Mysql中如果表不存在,不会自动创建

第5章 Sqoop一些常用命令及参数

5.1 常用命令列举

这里给大家列出来了一部分Sqoop操作时的常用参数,以供参考,需要深入学习的可以参看对应类的源代码。

序号命令说明
1importImportTool将数据导入到集群
2exportExportTool将集群数据导出
3codegenCodeGenTool获取数据库中某张表数据生成Java并打包Jar
4create-hive-tableCreateHiveTableTool创建Hive表
5evalEvalSqlTool查看SQL执行结果
6import-all-tablesImportAllTablesTool导入某个数据库下所有表到HDFS中
7jobJobTool用来生成一个sqoop的任务,生成后,该任务并不执行,除非使用命令执行该任务。
8list-databasesListDatabasesTool列出所有数据库名
9list-tablesListTablesTool列出某个数据库下所有表
10mergeMergeTool将HDFS中不同目录下面的数据合在一起,并存放在指定的目录中
11metastoreMetastoreTool记录sqoop job的元数据信息,如果不启动metastore实例,则默认的元数据存储目录为:~/.sqoop,如果要更改存储目录,可以在配置文件sqoop-site.xml中进行更改。
12helpHelpTool打印sqoop帮助信息
13versionVersionTool打印sqoop版本信息

5.2 命令&参数详解

刚才列举了一些Sqoop的常用命令,对于不同的命令,有不同的参数,让我们来一一列举说明。

首先来我们来介绍一下公用的参数,所谓公用参数,就是大多数命令都支持的参数。

5.2.1 公用参数:数据库连接

序号参数说明
1–connect连接关系型数据库的URL
2–connection-manager指定要使用的连接管理类
3–driverHadoop根目录
4–help打印帮助信息
5–password连接数据库的密码
6–username连接数据库的用户名
7–verbose在控制台打印出详细信息

5.2.2 公用参数:import

序号参数说明
1–enclosed-by 给字段值前加上指定的字符
2–escaped-by 对字段中的双引号加转义符
3–fields-terminated-by 设定每个字段是以什么符号作为结束,默认为逗号
4–lines-terminated-by 设定每行记录之间的分隔符,默认是\n
5–mysql-delimitersMysql默认的分隔符设置,字段之间以逗号分隔,行之间以\n分隔,默认转义符是\,字段值以单引号包裹。
6–optionally-enclosed-by 给带有双引号或单引号的字段值前后加上指定字符。

5.2.3 公用参数:export

序号参数说明
1–input-enclosed-by 对字段值前后加上指定字符
2–input-escaped-by 对含有转移符的字段做转义处理
3–input-fields-terminated-by 字段之间的分隔符
4–input-lines-terminated-by 行之间的分隔符
5–input-optionally-enclosed-by 给带有双引号或单引号的字段前后加上指定字符

5.2.4 公用参数:hive

序号参数说明
1–hive-delims-replacement 用自定义的字符串替换掉数据中的\r\n和\013 \010等字符
2–hive-drop-import-delims在导入数据到hive时,去掉数据中的\r\n\013\010这样的字符
3–map-column-hive 生成hive表时,可以更改生成字段的数据类型
4–hive-partition-key创建分区,后面直接跟分区名,分区字段的默认类型为string
5–hive-partition-value 导入数据时,指定某个分区的值
6–hive-home hive的安装目录,可以通过该参数覆盖之前默认配置的目录
7–hive-import将数据从关系数据库中导入到hive表中
8–hive-overwrite覆盖掉在hive表中已经存在的数据
9–create-hive-table默认是false,即,如果目标表已经存在了,那么创建任务失败。
10–hive-table后面接要创建的hive表,默认使用MySQL的表名
11–table指定关系数据库的表名

公用参数介绍完之后,我们来按照命令介绍命令对应的特有参数。

5.2.5 命令&参数:import

将关系型数据库中的数据导入到HDFS(包括Hive,HBase)中,如果导入的是Hive,那么当Hive中没有对应表时,则自动创建。

1) 命令:

如:导入数据到hive中

$  bin/sqoop import \  
--connect  jdbc:mysql://hadoop102:3306/company \  
--username  root \  
--password  000000 \  
--table  staff \  
--hive-import  

如:增量导入数据到hive中,mode=append

append导入:

 $ bin/sqoop import \  
 --connect jdbc:mysql://hadoop102:3306/company  \  
 --username root \  
 --password 000000 \  
 --table staff \  
 --num-mappers 1 \  
 --fields-terminated-by "\t" \  
 --target-dir  /user/hive/warehouse/staff_hive \  
 --check-column id \  
 --incremental append \  
 --last-value 3  

尖叫提示:append不能与–hive-等参数同时使用(Append mode for hive imports is not yet supported. Please remove the parameter --append-mode)

如:增量导入数据到hdfs中,mode=lastmodified

先在mysql中建表并插入几条数据:

 mysql>  create table company.staff_timestamp(id int(4), name varchar(255), sex  varchar(255), last_modified timestamp DEFAULT CURRENT_TIMESTAMP ON UPDATE  CURRENT_TIMESTAMP);  
 mysql>  insert into company.staff_timestamp (id, name, sex) values(1, 'AAA',  'female');  
 mysql>  insert into company.staff_timestamp (id, name, sex) values(2, 'BBB', 'female'); 

先导入一部分数据:

$ bin/sqoop import \  
--connect jdbc:mysql://hadoop102:3306/company  \  
--username root \  
--password 000000 \  
--table staff_timestamp \  
--delete-target-dir \  
--m 1  
 


再增量导入一部分数据:

mysql>  insert into company.staff_timestamp (id, name, sex) values(3, 'CCC',  'female');  
$ bin/sqoop import \  
--connect jdbc:mysql://hadoop102:3306/company  \  
--username root \  
--password 000000 \  
--table staff_timestamp \  
--check-column last_modified \  
--incremental lastmodified \  
--last-value "2017-09-28  22:20:38" \  
--m 1 \  
--append  

尖叫提示:使用lastmodified方式导入数据要指定增量数据是要–append(追加)还是要–merge-key(合并)

尖叫提示:last-value指定的值是会包含于增量导入的数据中

2) 参数:

序号参数说明
1–append将数据追加到HDFS中已经存在的DataSet中,如果使用该参数,sqoop会把数据先导入到临时文件目录,再合并。
2–as-avrodatafile将数据导入到一个Avro数据文件中
3–as-sequencefile将数据导入到一个sequence文件中
4–as-textfile将数据导入到一个普通文本文件中
5–boundary-query 边界查询,导入的数据为该参数的值(一条sql语句)所执行的结果区间内的数据。
6–columns <col1, col2, col3>指定要导入的字段
7–direct直接导入模式,使用的是关系数据库自带的导入导出工具,以便加快导入导出过程。
8–direct-split-size在使用上面direct直接导入的基础上,对导入的流按字节分块,即达到该阈值就产生一个新的文件
9–inline-lob-limit设定大对象数据类型的最大值
10–m或–num-mappers启动N个map来并行导入数据,默认4个。
11–query或–e 将查询结果的数据导入,使用时必须伴随参–target-dir,–hive-table,如果查询中有where条件,则条件后必须加上$CONDITIONS关键字
12–split-by 按照某一列来切分表的工作单元,不能与–autoreset-to-one-mapper连用(请参考官方文档)
13–table 关系数据库的表名
14–target-dir 指定HDFS路径
15–warehouse-dir 与14参数不能同时使用,导入数据到HDFS时指定的目录
16–where从关系数据库导入数据时的查询条件
17–z或–compress允许压缩
18–compression-codec指定hadoop压缩编码类,默认为gzip(Use Hadoop codec default gzip)
19–null-string string类型的列如果null,替换为指定字符串
20–null-non-string 非string类型的列如果null,替换为指定字符串
21–check-column
作为增量导入判断的列名
22–incremental mode:append或lastmodified
23–last-value 指定某一个值,用于标记增量导入的位置

5.2.6 命令&参数:export

从HDFS(包括Hive和HBase)中奖数据导出到关系型数据库中。

1) 命令:

如:

$ bin/sqoop export \ --connect jdbc:mysql://hadoop102:3306/company \ --username root \ --password 000000 \ --table staff \ --export-dir /user/company \ --input-fields-terminated-by “\t” \ --num-mappers 1

2) 参数:

序号参数说明
1–direct利用数据库自带的导入导出工具,以便于提高效率
2–export-dir 存放数据的HDFS的源目录
3-m或–num-mappers 启动N个map来并行导入数据,默认4个
4–table 指定导出到哪个RDBMS中的表
5–update-key 对某一列的字段进行更新操作
6–update-mode updateonly allowinsert(默认)
7–input-null-string 请参考import该类似参数说明
8–input-null-non-string 请参考import该类似参数说明
9–staging-table 创建一张临时表,用于存放所有事务的结果,然后将所有事务结果一次性导入到目标表中,防止错误。
10–clear-staging-table如果第9个参数非空,则可以在导出操作执行前,清空临时事务结果表

5.2.7 命令&参数:codegen

将关系型数据库中的表映射为一个Java类,在该类中有各列对应的各个字段。

如:

$ bin/sqoop codegen \ --connect jdbc:mysql://hadoop102:3306/company \ --username root \ --password 000000 \ --table staff \ --bindir /home/admin/Desktop/staff \ --class-name Staff \ --fields-terminated-by “\t”

序号参数说明
1–bindir 指定生成的Java文件、编译成的class文件及将生成文件打包为jar的文件输出路径
2–class-name 设定生成的Java文件指定的名称
3–outdir 生成Java文件存放的路径
4–package-name 包名,如com.z,就会生成com和z两级目录
5–input-null-non-string 在生成的Java文件中,可以将null字符串或者不存在的字符串设置为想要设定的值(例如空字符串)
6–input-null-string 将null字符串替换成想要替换的值(一般与5同时使用)
7–map-column-java 数据库字段在生成的Java文件中会映射成各种属性,且默认的数据类型与数据库类型保持对应关系。该参数可以改变默认类型,例如:–map-column-java id=long, name=String
8–null-non-string 在生成Java文件时,可以将不存在或者null的字符串设置为其他值
9–null-string 在生成Java文件时,将null字符串设置为其他值(一般与8同时使用)
10–table 对应关系数据库中的表名,生成的Java文件中的各个属性与该表的各个字段一一对应

5.2.8 命令&参数:create-hive-table

生成与关系数据库表结构对应的hive表结构。

命令:

如:

$ bin/sqoop create-hive-table \ --connect jdbc:mysql://hadoop102:3306/company \ --username root \ --password 000000 \ --table staff \ --hive-table hive_staff

参数:

序号参数说明
1–hive-home Hive的安装目录,可以通过该参数覆盖掉默认的Hive目录
2–hive-overwrite覆盖掉在Hive表中已经存在的数据
3–create-hive-table默认是false,如果目标表已经存在了,那么创建任务会失败
4–hive-table后面接要创建的hive表
5–table指定关系数据库的表名

5.2.9 命令&参数:eval

可以快速的使用SQL语句对关系型数据库进行操作,经常用于在import数据之前,了解一下SQL语句是否正确,数据是否正常,并可以将结果显示在控制台。

命令:

如:

$ bin/sqoop eval \ --connect jdbc:mysql://hadoop102:3306/company \ --username root \ --password 000000 \ --query “SELECT * FROM staff”

参数:

序号参数说明
1–query或–e后跟查询的SQL语句

5.2.10 命令&参数:import-all-tables

可以将RDBMS中的所有表导入到HDFS中,每一个表都对应一个HDFS目录

命令:

如:

$ bin/sqoop import-all-tables \ --connect jdbc:mysql://hadoop102:3306/company \ --username root \ --password 000000 \ --warehouse-dir /all_tables

参数:

序号参数说明
1–as-avrodatafile这些参数的含义均和import对应的含义一致
2–as-sequencefile
3–as-textfile
4–direct
5–direct-split-size
6–inline-lob-limit
7–m或—num-mappers
8–warehouse-dir
9-z或–compress
10–compression-codec

5.2.11 命令&参数:job

用来生成一个sqoop任务,生成后不会立即执行,需要手动执行。

命令:

如:

$ bin/sqoop job \ --create myjob – import-all-tables \ --connect jdbc:mysql://hadoop102:3306/company \ --username root \ --password 000000 $ bin/sqoop job \ --list $ bin/sqoop job \ --exec myjob

尖叫提示:注意import-all-tables和它左边的–之间有一个空格

尖叫提示:如果需要连接metastore,则–meta-connect jdbc:hsqldb:hsql://linux01:16000/sqoop

参数:

序号参数说明
1–create 创建job参数
2–delete 删除一个job
3–exec 执行一个job
4–help显示job帮助
5–list显示job列表
6–meta-connect 用来连接metastore服务
7–show 显示一个job的信息
8–verbose打印命令运行时的详细信息

提示:在执行一个job时,如果需要手动输入数据库密码,可以做如下优化

5.2.12 命令&参数:list-databases

命令:

**参数:**与公用参数一样

5.2.13 命令&参数:list-tables

命令:

**参数:**与公用参数一样

5.2.14 命令&参数:merge

将HDFS中不同目录下面的数据合并在一起并放入指定目录中

数据环境:

提示:上边数据的列之间的分隔符应该为\t,行与行之间的分割符为\n,如果直接复制,请检查之。

命令:

参数:

序号参数说明
1–new-data HDFS 待合并的数据目录,合并后在新的数据集中保留
2–onto HDFS合并后,重复的部分在新的数据集中被覆盖
3–merge-key
合并键,一般是主键ID
4–jar-file 合并时引入的jar包,该jar包是通过Codegen工具生成的jar包
5–class-name 对应的表名或对象名,该class类是包含在jar包中的
6–target-dir 合并后的数据在HDFS里存放的目录

5.2.15 命令&参数:metastore

记录了Sqoop job的元数据信息,如果不启动该服务,那么默认job元数据的存储目录为~/.sqoop,可在sqoop-site.xml中修改。

命令:

如:启动sqoop的metastore服务

$ bin/sqoop metastore

参数:

序号参数说明
1–shutdown关闭metastore
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值